

WP 11004

DETERMINATION OF WATER RESOURCE CLASSES AND RESOURCE QUALITY OBJECTIVES FOR THE WATER RESOURCES IN THE MZIMVUBU CATCHMENT

# WETLANDS AND GROUNDWATER RQO REPORT

June 2018 Report Number: WE/WMA7/00/CON/CLA/0318

#### Published by

Department of Water and Sanitation Private Bag X313 PRETORIA, 0001 Republic of South Africa

> Tel: +27 (12) 336 7500 Fax: +27 (12) 323 0321

#### **Copyright reserved**

No part of this publication may be reproduced in any manner without full acknowledgement of the source

This report should be cited as:

Department of Water and Sanitation (DWS), South Africa, 2018. Determination of Water Resource Classes and Resource Quality Objectives for Water Resources in the Mzimvubu Catchment. Wetlands and Groundwater RQO Report. Authored by MacKenzie, J. and Sami, K. for Scherman Colloty and Associates cc. Report no. WE/WMA7/00/CON/CLA/0318

**Compiled by:** Scherman Colloty and Associates cc 22 Somerset Street Grahamstown 6139

## **DOCUMENT INDEX**

| Report name                                                                                                  | Report number                                                          |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Inception Report                                                                                             | WE/WMA7/00/CON/CLA/0116                                                |
| Survey Report                                                                                                | WE/WMA7/00/CON/CLA/0216                                                |
| Status Quo and (RUs and IUA) Delineation Report                                                              | WE/WMA7/00/CON/CLA/0316                                                |
| River Workshop Report                                                                                        | WE/WMA7/00/CON/CLA/WKSP/0117                                           |
| River Desktop EWR and Modelling Report:<br>Volume 1 – Systems Modelling<br>Volume 2 – Desktop EWR Assessment | WE/WMA7/00/CON/CLA/0217, Volume 1<br>WE/WMA7/00/CON/CLA/0217, Volume 2 |
| BHNR Report (Surface and Groundwater)                                                                        | WE/WMA7/00/CON/CLA/0317                                                |
| Estuary Workshop Report                                                                                      | WE/WMA7/00/CON/CLA/WKSP/0417                                           |
| Scenario Description Report                                                                                  | WE/WMA7/00/CON/CLA/0517                                                |
| River EWR Report                                                                                             | WE/WMA7/00/CON/CLA/0617                                                |
| Estuary EWR Report                                                                                           | WE/WMA7/00/CON/CLA/0717                                                |
| Groundwater Report                                                                                           | WE/WMA7/00/CON/CLA/0817                                                |
| Wetland EcoClassification Report                                                                             | WE/WMA7/00/CON/CLA/0917                                                |
| Scenario Non-ecological Consequences Report                                                                  | WE/WMA7/00/CON/CLA/1017                                                |
| Ecological Consequences Report.<br>Appendix: Ecological Consequences to Phase 2 of<br>Scenario Modelling.    | WE/WMA7/00/CON/CLA/1117<br>WE/WMA7/00/CON/CLA/1117; Appendix           |
| Water Resource Class and Catchment Configuration Report                                                      | WE/WMA7/00/CON/CLA/0118                                                |
| River and Estuary RQO Report                                                                                 | WE/WMA7/00/CON/CLA/0218                                                |
| Wetlands and Groundwater RQO Report                                                                          | WE/WMA7/00/CON/CLA/0318                                                |
| Monitoring and Implementation Report                                                                         | WE/WMA7/00/CON/CLA/0418                                                |
| Water Resource Classes and RQOs Gazette Template<br>Input                                                    | WE/WMA7/00/CON/CLA/0518                                                |
| Main Report                                                                                                  | WE/WMA7/00/CON/CLA/0618a                                               |
| Close Out Report                                                                                             | WE/WMA7/00/CON/CLA/0618b                                               |
| Issues and Response Report                                                                                   | WE/WMA7/00/CON/CLA/0718                                                |

Bold indicates this report

## APPROVAL

| TITLE:           | Wetlands and Groundwater RQO Report |
|------------------|-------------------------------------|
| DATE:            | June 2018                           |
| AUTHORS:         | MacKenzie J, Sami K                 |
| EDITOR:          | Gowans L                            |
| REVIEWERS:       | Project Management Team             |
| LEAD CONSULTANT: | Scherman Colloty and Associates cc  |
| REPORT NO:       | WE/WMA7/00/CON/CLA/0318             |
| FORMAT:          | MSWord and PDF                      |
| WEB ADDRESS:     | http://www.dws.gov.za               |

Approved for Scherman Colloty and Associates cc:

Dr Patsy Scherman Study Leader

Supported by:

Recommended by:

Lawrence Mulangaphuma Project Manager Ms Lebogang Matlala Director: Water Resource Classification

Approved for the Department of Water and Sanitation by:

Ms Ndileka Mohapi Chief Director: Water Ecosystems The following persons contributed to this project.

## Project Management Team

| Matlala, L      | DWS: Water Ecosystems; Classification         |
|-----------------|-----------------------------------------------|
| Mulangaphuma, L | DWS: Water Ecosystems; Classification         |
| Scherman, P-A   | Scherman Colloty & Associates cc              |
| Sauer, J        | Scherman Colloty & Associates cc              |
| Weni, E         | DWS: Eastern Cape Regional Office             |
| Weston, B       | DWS: Water Ecosystems; Surface Water Reserves |
| Neswiswi, T     | DWS: Water Ecosystems; Surface Water Reserves |
| Kganetsi, M     | DWS: Resource Protection and Waste            |
| Molokomme, L    | DWS: Water Ecosystems; Groundwater Reserves   |
| Muthraparsad, N | DWS: Environment and Recreation               |
| Thompson, I     | DWS: Integrated Water Resource Planning       |
| Matume, M       | DWS: Stakeholder Engagement and Coordination  |
| Cilliers, G     | DWS: Resource Quality Information Services    |
| Majola, S       | DWS: Resource Quality Information Services    |
|                 |                                               |

## AUTHORS

The following persons contributed to this report:

| Author       | Company                                          |
|--------------|--------------------------------------------------|
| MacKenzie, J | MacKenzie Ecological and Development Services cc |
| Sami, K      | WSM Leshika Consulting (Pty) Ltd                 |

## **REPORT SCHEDULE**

| Version      | Date       |
|--------------|------------|
| First draft  | April 2018 |
| Final report | June 2018  |

#### BACKGROUND

The Mzimvubu catchment has been prioritised for implementation of the Water Resource Classification System (WRCS) in order to determine appropriate Water Resource Classes and Resource Quality Objectives (RQOs) in order to facilitate the sustainable use of water resources without impacting negatively on their ecological integrity.

The main aims of the project, as defined by the Terms of Reference (ToR), are to undertake the following:

- Coordinate the implementation of the WRCS as required in Regulation 810 in Government Gazette 33541 dated 17 September 2010, by classifying all significant water resources in the Mzimvubu catchment,
- determine RQOs using the DWS's procedures to determine and implement RQOs for the defined classes, and
- review work previously done on Ecological Water Requirements (EWR) and the Basic Human Needs Reserve (BHNR) and assess whether suitable for the purposes of Classification.

This purpose of this report is to describe the Wetland and Groundwater RQOs for the study area, and more specifically qualify and quantify RQOs for wetlands and groundwater sources within the Mzimvubu (T3) primary catchment in keeping with part of Step 6 of the procedures to operationalise Resource Directed Measures (DWS, 2016).

#### STUDY AREA

The study area is represented by the Mzimvubu catchment which consists of the main Mzimvubu River, the Tsitsa, Thina, Kinira and Mzintlava main tributaries and the estuary at Port St Johns. Several hundred wetlands occur within the Mzimvubu (T3) primary catchment.

#### **RESOURCE QUALITY OBJECTIVES**

RQOs are numerical and/or descriptive statements about the biological, chemical and physical attributes that characterise a resource for the level of protection defined by its Class. The *National Water Resource Strategy* (NWRS) therefore stipulates that "Resource Quality Objectives might describe, among other things, the quantity, pattern and timing of instream flow; water quality; the character and condition of riparian habitat, and the characteristics and condition of the aquatic biota".

Operational scenarios, Water Resource Classes and RQOs are inherently linked as operational scenarios to inform the Water Resource Class and RQOs define and/or describe the Water Resource Class.



Links between RQOs and the Water Resource Class and operational scenarios

## WETLAND RESOURCE QUALITY OBJECTIVES

Due to the high number of wetlands within the T3 primary catchment and following the recommendations and method guidelines of DWS (2016), specific RQOs were only determined for priority wetlands of High or Very High importance, although the detail of these were constrained by the availability of existing data. Broad-scale catchment and sub-catchment RQOs were determined for all other wetlands. Broad level narrative RQOs for wetlands across the Water Management Area (WMA) were determined at the quaternary catchment scale, and focussed on averages of Present Ecological State (PES) and Ecological Importance and Sensitivity (EIS) categories, mostly from the PESEIS database (DWS, 2014a). These broad scale narrative RQOs specify that the average quaternary level PES and EIS should be maintained and not permitted to deteriorate, and have been developed so that all wetlands, even those of a low priority, have some measure of protection. The data that underpin these broad scale RQOs are shown in **Tables 3.1** and **3.2** and **Figures 3.1** and **3.2**.

Catchment level RQOs were developed at the sub-quaternary (SQ) scale and are listed in **Table 3.3.** These specify more detail and at a finer scale than the broad level RQOs and should be used in preference to them. Catchment level RQOs rely on PESEIS data (DWS, 2014a) for low or moderate priority wetlands (an improvement from broad scale RQOs only due to finer scale and not a quaternary average) and verified data using a similar but expanded method of the PESEIS rationale (to include all wetlands within a SQ catchment). Data used to determine catchment level RQOs are outlined in **Table 2.1**.

More detailed RQOs were developed for wetlands of High or Very High priority. Floodplain RQOs are listed in **Table 3.4** while RQOs for High priority channelled and unchannelled valley bottoms, flats and seeps are listed in **Table 3.5**. These were highlighted as priority during the Ecostatus and EWR determination for wetlands process (DWS, 2017a). As detailed data of these high priority individual wetlands were limited, Google Earth© was used to conduct level 1 WET-Health assessments (MacFarlane et al., 2007) for floodplains and to verify PES ratings and wetland metrics in the PESEIS database for channelled valley bottom wetlands. Updated metrics were applicable to all wetlands within a SQ and included wetland habitat modification and wetland continuity (fragmentation and connectivity) modification.

It should be stressed that although RQOs at different levels have been determined, all should be taken into consideration in a tiered fashion. To clarify this approach an example of SQ T35G-06099 is given: The wetlands in this SQ occur in the T35G quaternary catchment and therefore have broad level RQOs that specify that the average PES of a B/C category and EIS of "High" be maintained (**Tables 3.1** and **3.2** and **Figures 3.1** and **3.2**). In addition, the catchment level RQOs specify narrative measures for the SQ T35G-06099 according to **Tables 3.3** (RQOs) and **2.1** (Data

supporting RQOs). These RQOs pertain to measures for water quantity, water quality, habitat, biota and ecosystem services for the SQ. One of the habitat RQOs related to integrity and condition specifies that the PES category of wetlands within this SQ must be maintained according to those listed in **Table 2.1**, which is a category B. Since this is a higher confidence measure than the quaternary average of a B/C category, it will take precedence. Similarly, the RQO related to EIS, as a measure of ecosystem services, will be "Very High", rather than the quaternary average of "High". However, this SQ also belongs to one of the high priority floodplains – Gatberg Floodplains – and will therefore also have more detailed RQOs as specified in **Table 3.4**. These will be in addition to those already given, and where overlap exists, precedence should be given to more detailed RQOs that are based on higher quality and confidence data.

## **GROUNDWATER RESOURCE QUALITY OBJECTIVES**

Criteria such as hydrogeology, borehole yields, groundwater use, water quality and groundwater contribution to baseflow are described per Groundwater Resource Unit (GRU) in this document. Monitoring recommendations are presented based on the groundwater RQOs presented in the relevant chapter for GRUs 1 to 14. Narrative groundwater RQOs are provided for water levels, abstraction, baseflow reduction, and selected water quality parameters, while numerical RQOs are also presented.

Based on the level of groundwater stress (stress index of abstraction to aquifer recharge), the following catchments can be considered as priority areas for monitoring *abstraction and groundwater levels*:

| Catchment | Stress Index | Priority |
|-----------|--------------|----------|
| T31F      | 0.341        | Moderate |
| T33A      | 0.371        | Moderate |

Based on the degree of *baseflow reduction* across the study area, the following catchments have been identified where low flow monitoring via gauging stations is relevant in order to evaluate how streamflow reduction activities impact on ecological requirements:

| Catchment | <b>Baseflow Reduction</b> | Priority |
|-----------|---------------------------|----------|
| T35F      | 43.85                     | Moderate |
| T35C      | 30.43                     | Moderate |

Over large parts of the study area insufficient *water quality data* exist to characterise groundwater quality based on nitrates and fluoride. The T33-T36 Tertiary catchments lack sufficient data. Due to the prevalence of doleritic intrusions, fluoride levels may be elevated. The degree of removal of vegetation and sanitation practices also suggest that elevated nitrates may be of localised concern.

Catchments T35K and T33H have a high proportion of boreholes with elevated salinities. No obvious geological reason for these pockets of salinities exists, and such areas need to be delineated to identify naturally occurring salinity from contamination processes.

## TABLE OF CONTENTS

|     |      |       | <                                                          |     |
|-----|------|-------|------------------------------------------------------------|-----|
|     | ROVA |       |                                                            |     |
|     |      |       | ENTS                                                       |     |
| -   |      |       | -                                                          |     |
|     |      |       |                                                            |     |
|     |      |       |                                                            |     |
|     | -    | -     | NTS                                                        |     |
| -   | -    | -     |                                                            |     |
| -   | -    |       | ATIONS                                                     |     |
|     |      |       | ATIONS                                                     |     |
| GLU |      |       | ON                                                         |     |
| 1   | 1 1  |       | ROUND                                                      |     |
|     | 1.1  |       | AREA OVERVIEW                                              |     |
|     | 1.2  |       | PROJECT PLAN                                               |     |
|     | 1.3  |       | DUCTION TO RESOURCE QUALITY OBJECTIVES                     |     |
|     | 1.5  |       | SE AND OUTLINE OF THIS REPORT                              |     |
| 2   |      |       | WETLAND RESOURCE QUALITY OBJECTIVES                        |     |
| -   | 2.1  |       | ROUND                                                      |     |
|     | 2.2  |       | BLE DATA FOR DETERMINING RESOURCE QUALITY OBJECTIVES       |     |
|     | 2.3  |       | LEVEL NARRATIVE RESOURCE QUALITY OBJECTIVES FOR WETLAND    |     |
|     | 2.0  |       | S THE WMA                                                  |     |
|     | 2.4  | CATCH | MENT LEVEL RESOURCE QUALITY OBJECTIVES FOR WETLANDS        | 2-3 |
|     | 2.5  |       | RCE QUALITY OBJECTIVES FOR HIGH PRIORITY INDIVIDUAL WETLAN |     |
|     |      | RESOU | RCE UNITS                                                  | 2-6 |
|     |      | 2.5.1 | Mzimvubu floodplains                                       | 2-7 |
|     |      | 2.5.2 | Matatiele floodplains                                      | 2-8 |
|     |      | 2.5.3 | Gatberg floodplains                                        | 2-9 |
| 3   | WET  |       | ESOURCE QUALITY OBJECTIVES                                 | 3-1 |
|     | 3.1  | BROAD | LEVEL NARRATIVE RESOURCE QUALITY OBJECTIVES FOR WETLAND    | )S  |
|     |      | ACROS | S THE WMA                                                  | 3-1 |
|     | 3.2  | CATCH | MENT LEVEL RESOURCE QUALITY OBJECTIVES FOR WETLANDS        | 3-3 |
|     | 3.3  | RESOU | RCE QUALITY OBJECTIVES FOR HIGH PRIORITY INDIVIDUAL WETLAN | IDS |
|     |      |       |                                                            |     |
| 4   | APP  |       | GROUNDWATER RESOURCE QUALITY OBJECTIVES                    |     |
|     | 4.1  |       | DUCTION                                                    |     |
|     | 4.2  |       | BLE DATA                                                   |     |
|     | 4.3  |       | DOLOGY                                                     |     |
|     | 4.4  | -     | IA USED FOR RESOURCE QUALITY OBJECTIVES                    | -   |
|     | 4.5  |       | FICATION OF CRITERIA IN RESOURCE QUALITY OBJECTIVES        |     |
|     |      | 4.5.1 | Classification of groundwater status                       |     |
|     |      |       | Abstraction                                                |     |
|     |      | 4.5.3 | Baseflow                                                   |     |
|     |      |       | Water level                                                |     |
|     |      | 4.5.5 | Water quality                                              | 4-6 |

|   |     | 4.5.6 RQOs for catchments with no surface groundwater interactions | 4-7 |
|---|-----|--------------------------------------------------------------------|-----|
| 5 | GRC | OUNDWATER: RESOURCE QUALITY OBJECTIVES                             | 5-1 |
|   | 5.1 | GRU 1 AND GRU 2: UPPER MZIMVUBU                                    | 5-1 |
|   |     | 5.1.1 Hydrogeology                                                 | 5-1 |
|   |     | 5.1.2 Groundwater use and resources                                | 5-3 |
|   |     | 5.1.3 Water quality                                                | 5-3 |
|   |     | 5.1.4 Groundwater contribution to baseflow                         | 5-4 |
|   |     | 5.1.5 Critical characteristics for setting RQOs                    | 5-4 |
|   | 5.2 | GRU 3: UPPER MZINTLAVA                                             | 5-5 |
|   |     | 5.2.1 Hydrogeology                                                 | 5-5 |
|   |     | 5.2.2 Groundwater use and resources                                |     |
|   |     | 5.2.3 Water quality                                                |     |
|   |     | 5.2.4 Groundwater contribution to baseflow                         |     |
|   |     | 5.2.5 Critical characteristics for setting RQOs                    |     |
|   | 5.3 | GRU 4: UPPER KINIRA                                                | 5-8 |
|   |     | 5.3.1 Hydrogeology                                                 |     |
|   |     | 5.3.2 Groundwater use and resources                                |     |
|   |     | 5.3.3 Water quality                                                |     |
|   |     | 5.3.4 Groundwater contribution to baseflow                         |     |
|   |     | 5.3.5 Critical characteristics for setting RQOs                    |     |
|   | 5.4 | GRU 5: LOWER KINIRA                                                |     |
|   |     | 5.4.1 Hydrogeology                                                 |     |
|   |     | 5.4.2 Groundwater use and resources                                |     |
|   |     | 5.4.3 Water quality                                                |     |
|   |     | 5.4.4 Groundwater contribution to baseflow                         |     |
|   |     | 5.4.5 Critical characteristics for setting RQOs                    |     |
|   | 5.5 | GRU 6: LOWER MZINTLAVA                                             |     |
|   |     | 5.5.1 Hydrogeology                                                 |     |
|   |     | 5.5.2 Groundwater use and resources                                |     |
|   |     | 5.5.3 Water quality                                                |     |
|   |     | 5.5.4 Groundwater contribution to baseflow                         |     |
|   |     | 5.5.5 Critical characteristics for setting RQOs                    |     |
|   | 5.6 | GRU 7: UPPER THINA                                                 |     |
|   |     | 5.6.1 Hydrogeology                                                 |     |
|   |     | 5.6.2 Groundwater use and resources                                |     |
|   |     | 5.6.3 Water quality                                                |     |
|   |     | 5.6.4 Groundwater contribution to baseflow                         |     |
|   |     | 5.6.5 Critical characteristics for setting RQOs                    |     |
|   | 5.7 | GRU 8: MIDDLE THINA                                                |     |
|   |     | 5.7.1 Hydrogeology                                                 |     |
|   |     | 5.7.2 Groundwater use and resources                                |     |
|   |     | 5.7.3 Water quality                                                |     |
|   |     | 5.7.4 Groundwater contribution to baseflow                         |     |
|   | FO  | 5.7.5 Critical characteristics for setting RQOs                    |     |
|   | 5.8 | GRU 9: LOWER THINA                                                 |     |
|   |     | 5.8.1 Hydrogeology                                                 |     |
|   |     | 5.8.2 Groundwater use and resources                                |     |

|     |       | 5.8.3    | Water quality                                             | 5-27 |
|-----|-------|----------|-----------------------------------------------------------|------|
|     |       | 5.8.4    | Groundwater contribution to baseflow                      | 5-27 |
|     |       | 5.8.5    | Critical characteristics for setting RQOs                 | 5-28 |
|     | 5.9   | GRU 10   | ): UPPER TSITSA                                           |      |
|     |       | 5.9.1    | Hydrogeology                                              | 5-28 |
|     |       | 5.9.2    | Groundwater use and resources                             |      |
|     |       | 5.9.3    | Water quality                                             | 5-30 |
|     |       | 5.9.4    | Groundwater contribution to baseflow                      | 5-30 |
|     |       | 5.9.5    | Critical characteristics for setting RQOs                 | 5-31 |
|     | 5.10  | GRU 11   | 1: MIDDLE TSITSA                                          | 5-32 |
|     |       | 5.10.1   | Hydrogeology                                              | 5-32 |
|     |       | 5.10.2   | Groundwater use and resources                             | 5-33 |
|     |       | 5.10.3   | Water quality                                             | 5-34 |
|     |       | 5.10.4   | Groundwater contribution to baseflow                      | 5-34 |
|     |       | 5.10.5   | Critical characteristics for setting RQOs                 | 5-35 |
|     | 5.11  | GRU 12   | 2: LOWER TSITSA                                           | 5-35 |
|     |       | 5.11.1   | Hydrogeology                                              | 5-35 |
|     |       | 5.11.2   | Groundwater use and resources                             | 5-37 |
|     |       | 5.11.3   | Water quality                                             | 5-37 |
|     |       | 5.11.4   | Groundwater contribution to baseflow                      | 5-37 |
|     |       | 5.11.5   | Critical characteristics for setting RQOs                 | 5-38 |
|     | 5.12  | GRU 13   | 3: LOWER MZIMVUBU                                         | 5-39 |
|     |       | 5.12.1   | Hydrogeology                                              | 5-39 |
|     |       | 5.12.2   | Groundwater use and resources                             | 5-40 |
|     |       | 5.12.3   | Water quality                                             | 5-40 |
|     |       | 5.12.4   | Groundwater contribution to baseflow                      |      |
|     |       | 5.12.5   | Critical characteristics for setting RQOs                 | 5-41 |
|     | 5.13  | GRU 14   | 4; MIDDLE MZIMVUBU                                        | 5-42 |
|     |       | 5.13.1   | Hydrogeology                                              | 5-42 |
|     |       | 5.13.2   | Groundwater use and resources                             | 5-43 |
|     |       | 5.13.3   | Water quality                                             |      |
|     |       | 5.13.4   | Groundwater contribution to baseflow                      | 5-44 |
|     |       | 5.13.5   | Critical characteristics for setting RQOs                 | 5-45 |
| 6   | CON   | CLUSIO   | NS AND RECOMMENDATIONS                                    | 6-1  |
|     | 6.1   | WETLA    | NDS                                                       | 6-1  |
|     | 6.2   | GROUN    | NDWATER                                                   | 6-1  |
|     |       | 6.2.1    | Priority monitoring areas for water level and abstraction | 6-2  |
|     |       | 6.2.2    | Priority monitoring areas for baseflow reduction          | 6-2  |
|     |       | 6.2.3    | Priority monitoring areas for water quality               |      |
| 7   |       |          | ES                                                        |      |
| APP | ENDIX | ( A: CON | MMENTS REGISTER                                           | A-1  |

## LIST OF TABLES

| Table 2.1  | PES, EI, ES and EIS categories for wetlands at the SQ scale              | 2-3  |
|------------|--------------------------------------------------------------------------|------|
| Table 2.2  | Extent of disturbance within the Mzimvubu floodplains                    |      |
| Table 2.3  | Extent of disturbance within the Matatiele floodplains                   | 2-9  |
| Table 2.4  | Extent of disturbance within the Gatberg floodplains                     | 2-10 |
| Table 2.5  | Validated PES and proposed TEC for floodplain wetlands with High or      |      |
|            | Very High priority                                                       | 2-11 |
| Table 3.1  | Average wetland EIS (calculated at the quaternary catchment scale) for   |      |
|            | quaternary catchments in the Mzimvubu WMA                                | 3-1  |
| Table 3.2  | Average wetland PES (calculated at the quaternary catchment scale) for   |      |
|            | quaternary catchments in the Mzimvubu WMA                                | 3-2  |
| Table 3.3  | Catchment level RQOs for wetlands. RQOs apply to all SQs listed in       |      |
|            | Table 2.1                                                                |      |
| Table 3.4  | RQOs for high priority floodplains                                       | 3-5  |
| Table 3.5  | RQOs for High priority Channelled and unchannelled valley bottoms,       |      |
|            | flats and seeps                                                          |      |
| Table 3.6  | Verification of high priority wetland modification (WET MOD) and continu |      |
|            | (WET CONT) at the SQ scale                                               | 3-10 |
| Table 4.1  | Literature sources and databases accessed during this study              | 4-1  |
| Table 4.2  | Summary of criteria used to set the groundwater RQOs                     | 4-4  |
| Table 4.3  | Terminology and classes used during the classification process           | 4-5  |
| Table 4.4  | DWS Water Quality classes                                                | 4-7  |
| Table 5.1  | Borehole yields in GRU 1 and GRU 2                                       |      |
| Table 5.2  | Groundwater use and resources in GRU 1 and 2                             | 5-3  |
| Table 5.3  | Borehole water quality in GRU 1 and 2                                    |      |
| Table 5.4  | Groundwater contribution to baseflow in GRU 1 and 2                      | 5-4  |
| Table 5.5  | Groundwater RQOs for GRU 1 and 2                                         | 5-4  |
| Table 5.6  | Borehole yields in GRU 3                                                 |      |
| Table 5.7  | Groundwater use and resources in GRU 3                                   |      |
| Table 5.8  | Borehole water quality in GRU 3                                          |      |
| Table 5.9  | Groundwater contribution to baseflow in GRU 3                            | 5-8  |
| Table 5.10 | Groundwater RQOs for GRU 3                                               | 5-8  |
| Table 5.11 | Borehole yields in GRU 4                                                 | 5-10 |
| Table 5.12 | Groundwater use and resources in GRU 4                                   | 5-10 |
| Table 5.13 | Borehole water quality in GRU 4                                          | 5-10 |
| Table 5.14 | Groundwater contribution to baseflow in GRU 4                            | 5-11 |
| Table 5.15 | Groundwater RQOs for GRU 4                                               | 5-11 |
| Table 5.16 | Borehole yields in GRU 5                                                 | 5-12 |
| Table 5.17 | Groundwater use and resources in GRU 5                                   | 5-14 |
| Table 5.18 | Borehole water quality in GRU 5                                          | 5-14 |
| Table 5.19 | Groundwater contribution to baseflow in GRU 5                            | 5-15 |
| Table 5.20 | Groundwater RQOs for GRU 5                                               | 5-15 |
| Table 5.21 | Borehole yields in GRU 6                                                 | 5-17 |
| Table 5.22 | Groundwater use and resources in GRU 6                                   | 5-17 |
| Table 5.23 | Borehole water quality in GRU 6                                          |      |
| Table 5.24 | Groundwater contribution to baseflow in GRU 6                            | 5-18 |

| Table 5.25 | Groundwater RQOs for GRU 6                     | . 5-18 |
|------------|------------------------------------------------|--------|
| Table 5.26 | Borehole yields in GRU 7                       | . 5-19 |
| Table 5.27 | Groundwater use and resources in GRU 7         | . 5-21 |
| Table 5.28 | Borehole water quality in GRU 7                | . 5-21 |
| Table 5.29 | Groundwater contribution to baseflow in GRU 7  | . 5-22 |
| Table 5.30 | Groundwater RQOs for GRU 7                     | . 5-22 |
| Table 5.31 | Borehole yields in GRU 8                       | . 5-24 |
| Table 5.32 | Groundwater use and resources in GRU 8         | . 5-24 |
| Table 5.33 | Borehole water quality in GRU 8                | . 5-24 |
| Table 5.34 | Groundwater contribution to baseflow in GRU 8  | . 5-25 |
| Table 5.35 | Groundwater RQOs for GRU 8                     | . 5-25 |
| Table 5.36 | Borehole yields in GRU 9                       | . 5-26 |
| Table 5.37 | Groundwater use and resources in GRU 9         | . 5-27 |
| Table 5.38 | Borehole water quality in GRU 8                | . 5-27 |
| Table 5.39 | Groundwater contribution to baseflow in GRU 9  | . 5-28 |
| Table 5.40 | Groundwater RQOs for GRU 9                     | . 5-28 |
| Table 5.41 | Borehole yields for GRU 10                     | . 5-29 |
| Table 5.42 | Groundwater Use and resources in GRU 10        | . 5-30 |
| Table 5.43 | Borehole water quality in GRU 10               | . 5-30 |
| Table 5.44 | Groundwater contribution to baseflow in GRU 10 | . 5-31 |
| Table 5.45 | Groundwater RQOs for GRU 10                    | . 5-31 |
| Table 5.46 | Borehole yields for GRU 11                     | . 5-32 |
| Table 5.47 | Groundwater use and resources in GRU 11        | . 5-33 |
| Table 5.48 | Borehole water quality in GRU 11               | . 5-34 |
| Table 5.49 | Groundwater contribution to baseflow in GRU 11 | . 5-34 |
| Table 5.50 | Groundwater RQOs for GRU 11                    | . 5-35 |
| Table 5.51 | Borehole yields for GRU 12                     | . 5-36 |
| Table 5.52 | Groundwater use and resources in GRU 12        | . 5-37 |
| Table 5.53 | Borehole water quality in GRU 12               | . 5-37 |
| Table 5.54 | Groundwater contribution to baseflow in GRU 12 | . 5-38 |
| Table 5.55 | Groundwater RQOs for GRU 12                    | . 5-38 |
| Table 5.56 | Borehole yields for GRU 13                     | . 5-39 |
| Table 5.57 | Groundwater use and resources in GRU 13        | . 5-40 |
| Table 5.58 | Borehole water quality in GRU 13               | . 5-40 |
| Table 5.59 | Groundwater contribution to baseflow in GRU 13 | . 5-41 |
| Table 5.60 | Groundwater RQOs for GRU 13                    | . 5-41 |
| Table 5.61 | Borehole yields for GRU 14                     | . 5-42 |
| Table 5.62 | Groundwater use and resources in GRU 14        | . 5-44 |
| Table 5.63 | Borehole water quality in GRU 14               | . 5-44 |
| Table 5.64 | Groundwater contribution to baseflow in GRU 14 | . 5-45 |
| Table 5.65 | Groundwater RQOs for GRU14                     | . 5-45 |

## LIST OF FIGURES

| Figure 1.1  | Study area: T3 primary catchment showing quaternary catchments and distribution of wetland types (Nel et al., 2011) | 1-2  |
|-------------|---------------------------------------------------------------------------------------------------------------------|------|
| Figure 1.2  | Project plan for the Mzimvubu Classification and RQO study                                                          | 1-3  |
| Figure 1.3  | Links between RQOs and the Water Resource Class and operational                                                     |      |
|             | scenarios                                                                                                           | 1-4  |
| Figure 2.1  | Illustration of the sub-steps for the process of RQO determination (DWS,                                            |      |
|             | 2016)                                                                                                               | 2-2  |
| Figure 2.2  | Wetland HGM types of High and Very High priority wetlands only                                                      | 2-7  |
| Figure 2.3  | Mzimvubu floodplains that were assessed with WET-Health Level 2 using                                               | J    |
|             | Google Earth©                                                                                                       | 2-8  |
| Figure 2.4  | Mataiele floodplains that were assessed with WET-Health Level 2 using                                               |      |
|             | Google Earth©                                                                                                       | 2-9  |
| Figure 2.5  | Gatberg floodplains that were assessed with WET-Health Level 2 using                                                |      |
|             | Google Earth ©                                                                                                      | 2-10 |
| Figure 3.1  | Average wetland EIS at the quaternary catchment scale                                                               | 3-2  |
| Figure 3.2  | Average wetland PES category at the quaternary catchment scale                                                      | 3-3  |
| Figure 4.1  | Approach to developing groundwater RQOs                                                                             | 4-2  |
| Figure 5.1  | Upper Mzimvubu GRU 1 (Molteno, Elliot, Clarens and Drakensberg                                                      |      |
|             | Formations) and GRU 2 (Tarkastad and Adelaide Subgroups)                                                            | 5-2  |
| Figure 5.2  | Upper Mzintlava GRU 3                                                                                               | 5-6  |
| Figure 5.3  | Upper Kinira GRU                                                                                                    | 5-9  |
| Figure 5.4  | Lower Kinira GRU 5                                                                                                  | 5-13 |
| Figure 5.5  | Lower Mzintlava GRU 6                                                                                               | 5-16 |
| Figure 5.6  | Upper Thina GRU 7                                                                                                   | 5-20 |
| Figure 5.7  | Middle Thina GRU 8                                                                                                  | 5-23 |
| Figure 5.8  | Lower Thina GRU 9                                                                                                   | 5-26 |
| Figure 5.9  | Upper Tsitsa GRU 10                                                                                                 | 5-29 |
| Figure 5.10 | Middle Tsitsa GRU 11                                                                                                | 5-33 |
| Figure 5.11 | Lower Tsitsa GRU 12                                                                                                 |      |
| Figure 5.12 | Lower Mzimvubu GRU                                                                                                  |      |
| Figure 5.13 | Middle Mzimvubu GRU 14                                                                                              | 5-43 |

## LIST OF ABBREVIATIONS

| AIPs     | Alien Invasive Plants                                                                            |
|----------|--------------------------------------------------------------------------------------------------|
| BHNR     | Basic Human Needs Reserve                                                                        |
| CGS      | Council for GeoScience                                                                           |
| DWA      | Department Water Affairs (Name change from DWAF applicable after April 2009)                     |
| DWAF     | Department Water Affairs and Forestry                                                            |
| DWS      | Department Water and Sanitation (Name change from DWA applicable after May 2014)                 |
| EC       | Ecological Category                                                                              |
| EIS      | Ecological Importance and Sensitivity                                                            |
| EWR      | Ecological Water Requirements                                                                    |
| GA       | General Authorization                                                                            |
| GRAII    | Groundwater Resource Assessment Phase II                                                         |
| GRDM     | Groundwater Reserve Determination Method                                                         |
| GRU      | Groundwater Resource Unit                                                                        |
| GW       | groundwater                                                                                      |
| HGM      | hydrogeomorphic                                                                                  |
| NEMA     | National Environmental Management Act                                                            |
| NFEPA    | National Freshwater Ecosystem Priority Area                                                      |
| NGA      | National Groundwater Archive                                                                     |
| NWA      | National Water Act                                                                               |
| NWRS     | National Water Resources Strategy                                                                |
| PES      | Present Ecological State                                                                         |
| PESEIS   | Present Ecological State, Ecological Importance and Sensitivity                                  |
| Quat     | Quaternary catchment                                                                             |
| RUs      | Resource Units                                                                                   |
| SFR      | Streamflow reduction                                                                             |
| SQ       | Sub Quaternary                                                                                   |
| SANBI    | South African National Biodiversity Institute                                                    |
| TDS      | Total Dissolved Solids                                                                           |
| ToR      | Terms of Reference                                                                               |
| TEC      | Target Ecological Category                                                                       |
| WARMS    | Water Allocation Registration Management System                                                  |
| WMA      | Water Management Area                                                                            |
| wq       | Water quality                                                                                    |
| WRCS     | Water Resource Classification System                                                             |
| WR2012   | Water Resources 2012                                                                             |
| WRSM2000 | Water Resources Simulation Model 2000. The Pitman Model with Sami Model Groundwater interactions |
| ZQM      | National Groundwater Quality Monitoring Network database                                         |

## GLOSSARY

- *Aquifer recharge* The volume of recharge that enters the regional aquifer after interflow losses and is available to groundwater users.
- *Baseflow* The volume of low flow generated from subsurface pathways, including interflow and groundwater baseflow.
- Depression This is a closed basin where water accumulates, usually with a concave shape, but sometimes very flat, in which case it is called a pan and can be confused with a flat wetland. When the shape of the basin is concave it is usually referred to as a pool or a lake.
- *Channelled valley bottom wetland bo*
- *Ecological Category (EC)* ECs are determined for all components of the ecosystem for driver (abiotic) and response (biotic) components. These are integrated into an overall or integrated state called the EcoStatus. This level of information with the entire component ECs is only available when detailed studies are undertaken. For more desktop type studies, only a single EC may be available which represent the EcoStatus. Whenever an EC is referred to without specifying that it is applicable to a specific component, this will always refer to the EcoStatus.
- *Ecological Importance and Sensitivity (EIS)* Key indicators in the ecological classification of water resources. Ecological importance relates to the presence, representativeness and diversity of species of biota and habitat. Ecological sensitivity relates to the vulnerability of the habitat and biota to modifications that may occur in flows, water levels and physico-chemical conditions.

*Ecological Water Requirements* (*EWR*) The flow patterns (magnitude, timing and duration) and water quality needed to maintain a riverine ecosystem in a particular condition. This term is used to refer to both the quantity and quality components.

- *EcoStatus* EcoStatus is defined as the totality of the features and characteristics of the river and its riparian areas that bear upon its ability to support an appropriate natural flora and fauna and is capacity to provide a variety of goods and services.
- *Flat* These represent areas where the groundwater is near the surface, mostly on coastal plains. Their main input of water is from rainfall. The flow is imperceptible and these wetlands are basically a transition between a depression and a valley bottom wetland.
- *Floodplain* This is a flat wetland area adjacent to a river channel in its lower reaches that is subject to periodic inundation due to flood events in the wet season. These flood events can be quite turbulent and leave many marks in the landscape, such as levees, oxbow lakes and depressions where fine sediment is deposited.
- *Groundwater* The volume of baseflow generated from the regional aquifer. *baseflow*

Determination of Water Resource Classes and Resource Quality Objectives for the Water Resources in the Mzimvubu Catchment Project No. WP 11004 / Wetlands and Groundwater RQO Report

*Interflow* The volume of baseflow generated prior to entering the regional aquifer.

*Present Ecological State (PES)* The current state or condition of a water resource in terms of its biophysical components (drivers) such as hydrology, geomorphology and water quality and biological responses *viz.* fish, invertebrates, riparian vegetation). The degree to which ecological conditions of an area have been modified from natural (reference) conditions.

Recommended Ecological Category is the future ecological state (Ecological Category (REC) The Recommended Ecological Categories A to D) that can be recommended for a resource unit depending on the EIS and PES. The REC is determined based on ecological criteria and considers the EIS, the restoration potential of the system and attainability thereof.

*Resource Quality* RQOs are numeric or descriptive goals that can be monitored for compliance *Objectives* to the WRC, for each part of each water resource. (*RQOs*)

*Slope seepage* This is wetland area located on gentle to steep slopes, driven by discharge of groundwater or by water percolating through the upper layers of the soil layer. Slope seepages generally feed into drainage basins or rivers.

Stress index The ratio of groundwater use to recharge or aquifer recharge.

*Sub-quaternary* A finer subdivision of the quaternary catchments (the catchment areas of tributaries of main stem rivers in quaternary catchments), to a sub-quaternary or quinary level.

Unchannelled This is a wetland area on a valley floor that is connected to a drainage network, but without a major channel running through it. It is characterized by the prevalence of diffuse flow, which is at or near the surface especially after rainfall events. Water mainly enters the wetland through an upstream channel, but sometimes also from adjacent slopes.

*Valleyhead* This is a typical concave wetland area located on gentle sloping land on a valley floor at the head of a drainage line. Water input is mainly from subsurface flow.

Water Resource Class (WRC) The Water Resource Class is representative of those attributes that the DWS (as the custodian) and society require of different water resources. The decision-making toward a WRC require a wide range of trade-offs to be assessed and evaluated at a number of scales. Final outcome of the process is a set of desired characteristics for use and ecological condition each of the water resources in a given catchment. The WRCS defines three management classes, Class I, II, and III, based on extent of use and alteration of ecological condition from the predevelopment condition.

*Water Resource Classification System (WRCS)* The Water Resource Classification System is a defined set of guidelines and procedures for determining the different classes of water resources (South African National Water Act (Act 36 of 1998) Chapter 3, Part 1, Section 2(a)). The outcome of the Classification Process will be the setting of the class, Reserve and Resource Quality Objectives by the Minister or delegated authority for every significant water resource (river, estuary, wetland and aquifer) under consideration. This class, which will range from Minimally used to Heavily used, essentially describes the desired condition of the resource, and concomitantly, the degree to which it can be utilised.

Determination of Water Resource Classes and Resource Quality Objectives for the Water Resources in the Mzimvubu Catchment Project No. WP 11004 / Wetlands and Groundwater RQO Report

## 1 INTRODUCTION

## 1.1 BACKGROUND

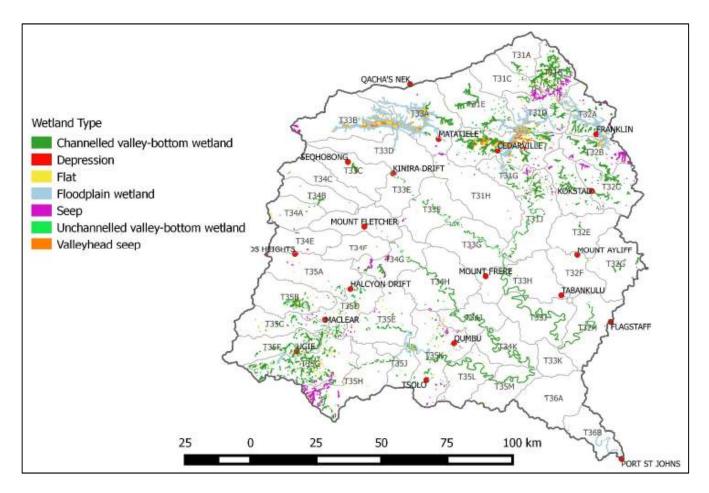
The National Environmental Management Act (NEMA; Act No. 107 of 1998) came into force in 1998. The objective of this Act is to provide for co-operative environmental governance by establishing principles for decision-making on matters affecting the environment, institutions that will promote co-operative governance and procedures for co-ordinating environmental functions exercised by organs of state; and to provide for matters connected therewith. These principles are required to be taken into account by any organ of state in the exercise of any power that may impact on the environment.

Chapter 2(5) (3) of the National Water Act (NWA; Act No. 36 of 1998) provides the framework for the protection, use, development, conservation, management and control of water resources for the country as a whole. It also provides the framework within which water will be managed at regional or catchment level, in defined Water Management Areas (WMAs). The NWA additionally recognises that the entire ecosystem, and not just the water itself, in any given water resource, constitutes the resource and as such needs to be conserved. The National Water Resource Strategy (NWRC) is binding on all authorities and institutions exercising powers or performing duties under this Act. Chapter 3 (12) of the NWA states that the Minister of Water and Sanitation may prescribe for classifying water resources, provide for such other matters relating to the protection, use, development, conservation, management and control of water resources, as the Minister considers necessary.

The Mzimvubu catchment has been prioritised for implementation of the Water Resource Classification System (WRCS) in order to determine appropriate Water Resource Classes and Resource Quality Objectives (RQOs) in order to facilitate the sustainable use of water resources without impacting negatively on their ecological integrity. These activities will guide the management of the T3 Mzimvubu primary catchment toward meeting the departmental objectives of maintaining, and if possible, improving the present state of the Mzimvubu River and its four main tributaries, namely the Tsitsa, Thina, Kinira and Mzintlava. This project is driven by threatened ecosystem services in the Mzimvubu catchment, due to the variety of inappropriate land uses and alien plant infestation that result in extensive erosion and degradation. Degradation can be observed in soil erosion, damage to infrastructure, water supply shortages and loss of grazing.

The Department of Water and Sanitation (DWS) has initiated a study to determine Classes and associated RQOs for the Mzimvubu catchment in WMA 7.

The main aims of the project, as defined by the Terms of Reference (ToR), are to undertake the following:

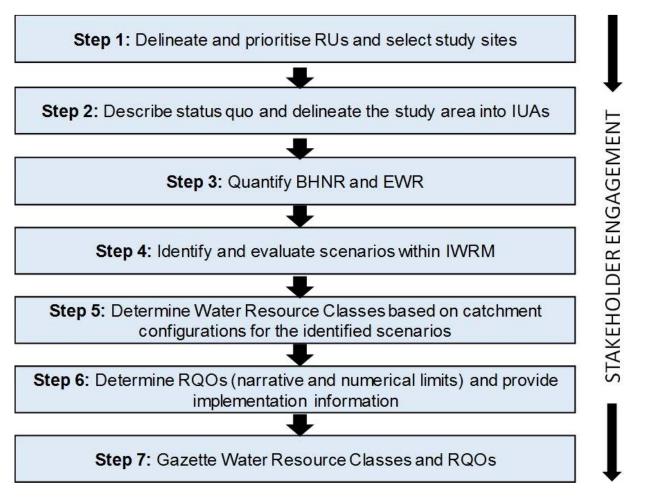

- Coordinate the implementation of the WRCS as required in Regulation 810 in Government Gazette 33541 dated 17 September 2010, by classifying all significant water resources in the Mzimvubu catchment,
- determine RQOs using the DWS's procedures to determine and implement RQOs for the defined classes, and

 review work previously done on Ecological Water Requirements (EWR) and the Basic Human Needs Reserve (BHNR) and assess whether suitable for the purposes of Classification.

This report addresses the conservation and management of the wetland and groundwater components of the water resource through the derivation of RQOs for these resources.

## 1.2 STUDY AREA OVERVIEW

The study area is represented by the Mzimvubu catchment which consists of the main Mzimvubu River, the Tsitsa, Thina, Kinira and Mzintlava main tributaries and the estuary at Port St Johns. The river reaches sizeable proportions after the confluence of these four tributaries in the Lower Mzimvubu area, approximately 120 km from its source, where the impressive Tsitsa Falls can be found near Shawbury Mission. The Mzimvubu catchment and river system lies along the northern boundary of the Eastern Cape and extends for over 200 km from its source in the Maloti-Drakensberg watershed on the Lesotho escarpment to the estuary at Port St Johns. The catchment is in Primary T, comprises of T31–36 and stretches from the Mzimkhulu River on the north-eastern side to the Mbashe and Mthatha river catchments in the south. The Mzimvubu river catchment is found in WMA 7, i.e. the Mzimvubu to Tsitsikamma WMA. Several hundred wetlands occur within the T3 primary catchment (**Figure 1.1**).

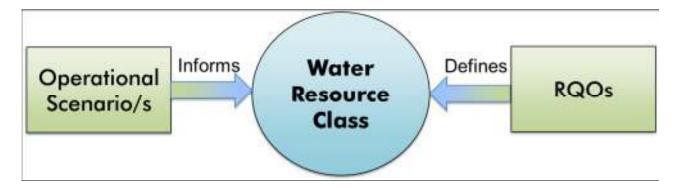



## Figure 1.1 Study area: T3 primary catchment showing quaternary catchments and distribution of wetland types (Nel et al., 2011)

Determination of Water Resource Classes and Resource Quality Objectives for the Water Resources in the Mzimvubu Catchment Project No. WP 11004 / Wetlands and Groundwater RQO Report

## 1.3 STUDY PROJECT PLAN

The Mzimvubu study is being undertaken according to the Project Plan in **Figure 1.2** with each step broken down into sub-steps. This report pertains to the RQO qualification and quantification part of Step 6.




## Figure 1.2 Project plan for the Mzimvubu Classification and RQO study

## 1.4 INTRODUCTION TO RESOURCE QUALITY OBJECTIVES

RQOs are numerical and/or descriptive statements about the biological, chemical and physical attributes that characterise a resource for the level of protection defined by its Class. The *National Water Resource Strategy* (NWRS) therefore stipulates that "Resource Quality Objectives might describe, among other things, the quantity, pattern and timing of instream flow; water quality; the character and condition of riparian habitat, and the characteristics and condition of the aquatic biota".

Operational scenarios, Water Resource Classes and RQOs are inherently linked as operational scenarios to inform the Water Resource Class and RQOs define and/or describe the Water Resource Class (**Figure 1.3**).



## Figure 1.3 Links between RQOs and the Water Resource Class and operational scenarios

## 1.5 PURPOSE AND OUTLINE OF THIS REPORT

The purpose of this report is to document the RQOs for Wetlands and Groundwater for the study area. The report structure is outlined below.

#### **Chapter 1: Introduction**

This chapter provides an overview of the study area and objectives of the study.

#### Chapter 2: Approach – Wetlands RQOs

This chapter outlines the general approach to determining the RQOs for wetlands.

#### **Chapter 3: Wetland RQOs**

This chapter outlines the wetland RQOs, both narrative and numerical, for wetland at different scales.

#### Chapter 4: Approach – Groundwater RQOs

This Chapter outlines the general approach to determining the RQOs for groundwater

### **Chapter 5: Groundwater RQOs**

This chapter outlines the narrative and numerical groundwater RQOs for the study area.

### **Chapter 6: Conclusions and Recommendations**

Result are summarised and discussed in this chapter.

#### **Chapter 7: References**

## 2 APPROACH: WETLAND RESOURCE QUALITY OBJECTIVES

## 2.1 BACKGROUND

Due to the high number of wetlands within the T3 primary catchment (**Figure 1.1**), it is unrealistic to implement and monitor RQOs for each individual wetland. Following the recommendations and method guidelines by DWS (2016), specific RQOs are only set for priority wetlands of High or Very High priority or importance, although these were constrained by the availability of existing data. The overall, integrated process of determining RQOs for wetlands is shown in **Figure 2.1**. The objective of the wetland component is to specify RQOs for wetlands at both a catchment level as well as prioritised individual wetland Resource Units (RUs; prioritisation was conducted as part of the delineation and status quo reporting task, refer to DWS (2017b)). Catchment-level RQOs provide broad level objectives for wetland management within the WMA. RQOs for priority individual wetland RUs are dependent on available baseline data, and where such data are available, this enables the specification of numeric as well as narrative RQOs to manage these systems according to the desired ecological condition.

Two levels of RQOs have thus been determined for the T3 wetlands:

- Catchment-level RQOs: Baseline EcoStatus and EIS data at the quaternary catchment and SQ catchment scales were developed for these RQOs.
- RQOs for high priority individual wetlands or wetland RUs: Developed for Very High priority wetlands with more detail than above.

The following summarises the process for RQO determination (see DWS; 2016a for more detail):

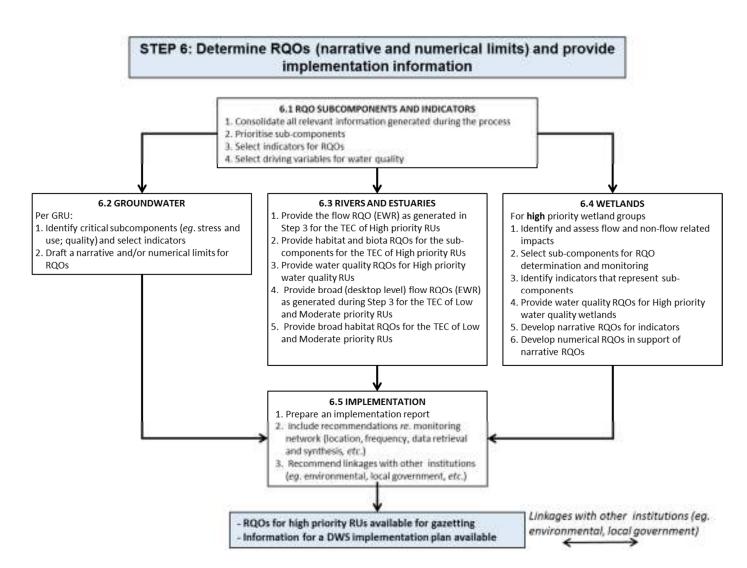
## 1. Collate information on flow and non-flow related impacts

This requires collation of information on flow and non-flow related impacts identified in previous tasks (i.e. the delineation and wetland status quo reporting task, refer to DWS, 2017b).

## 2. Select sub-components and indicators for RQO determination and monitoring

The main components of relevance to wetlands include water quantity, quality and habitat and biota. Sub-components and indicators should reflect those that are sensitive to actual or potential impacts and can be measured and monitored.

## 3. Provide narrative RQOs for indicators of High Priority wetland RUs This involves the preparation of narrative RQOs for sub-components and indicators identified as relevant in the previous action.


## 4. Provide numeric RQOs for indicators of high Priority wetland RUs This involves the preparation of numerical RQOs to complement the narrative RQOs but will be limited by existing baseline data.

## 5. Provide broad level narrative RQOs for priority catchments

This involves the specification of generic management guidelines specific to regional scale sub-components.

## 6. Provide broad level narrative RQOs for wetlands across the WMA

Generic management guidelines specific to the wetland regions should provide management and monitoring approaches for specific sub-components (relevant to the wetland types and risks of the relevant wetland region).



### Figure 2.1 Illustration of the sub-steps for the process of RQO determination (DWS, 2016)

## 2.2 AVAILABLE DATA FOR DETERMINING RESOURCE QUALITY OBJECTIVES

Available information for the wetlands of the T3 catchment was sourced during the the, delineation and wetland status quo reporting task (DWS, 2017b), as well as the determination of Wetland Ecostatus and EWR tasks (DWS, 2017a). This included the selection of high priority wetlands or wetland groups based on ecological, socio-cultural and water resource use importance. The assessment of PES relied on existing metrics within the PESEIS database (DWS, 2014a), while the assessment of EIS relied on the identification and rating of biodiversity value, ecological importance, functional value, wetland sensitivity and risk of degradation.

## 2.3 BROAD LEVEL NARRATIVE RESOURCE QUALITY OBJECTIVES FOR WETLANDS ACROSS THE WMA

Broad level narrative RQOs were expressed as average PES and EIS categories within each quaternary catchment. These are meant to serve as generic management guidelines for the management and monitoring of wetlands and risks at the quaternary catchment scale, and are only meant for use in the absence of more detailed or finer-scale RQOs.

## 2.4 CATCHMENT LEVEL RESOURCE QUALITY OBJECTIVES FOR WETLANDS

Baseline information for wetlands at the SQ catchment scale was generated as part of the delineation and wetland status quo reporting task (DWS, 2017b), as well as the determination of Wetland Ecostatus and EWR tasks (DWS, 2017a). This included the selection of high priority wetlands or wetland groups based on ecological, socio-cultural and water resource use importance. The assessment of PES relied on existing metrics (both of the riparian/wetland metrics: riparian/wetland zone and zone continuity modification) within the PESEIS database (DWS, 2014a), while the assessment of EIS relied on the following actions:

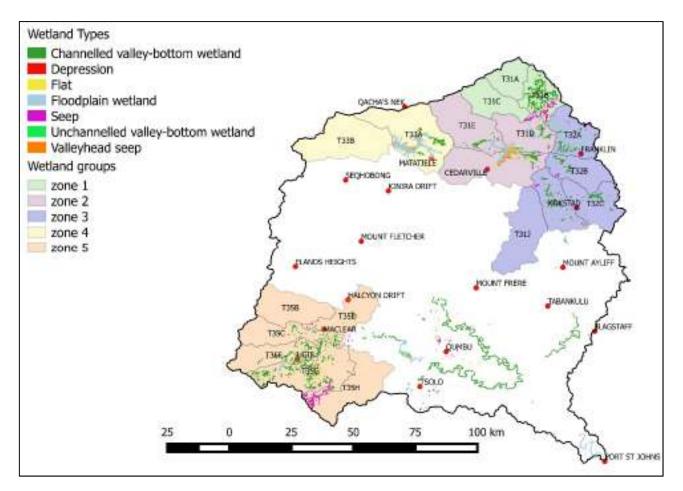
- Identification and rating of biodiversity value and ecological importance. Specific criteria that define biodiversity value were rated, based on desktop information (e.g. RAMSAR status, condition including NFEPA (National Freshwater Ecosystem Priority Area), habitats for rare and endangered species (birds, frogs etc.), and critical biodiversity areas (Berliner and Desmet, 2007)).
- Identification and rating of functional value. Specific criteria that evaluate the functional value including socio-economic value; hydrological functioning (flow regulation, maintenance of base flows) and water quality amelioration were rated.
- Identification and rating of sensitivity of each wetland unit. Criteria used include size, hydrogeomorphic (HGM) type, known sensitive species or habitats, and degree of impact.
- *Rating the risk of degradation.* Risk to a wetland unit was based on land use and water demand.

The results are summarised in **Table 2.1**. Note that naming refers to the main river in the SQ to provide a measure of location of the wetlands. It is not possible to name the wetlands due to the vast numbers present in the T3 catchment.

| Quat | SQ         | Main river name | Wetland El | Wetland ES | EIS       | PES | Wetland<br>priority |
|------|------------|-----------------|------------|------------|-----------|-----|---------------------|
| T31A | T31A-04712 | Mzimvubu        | HIGH       | LOW        | HIGH      | С   | 2                   |
| T31B | T31B-04745 | Krom            | HIGH       | MODERATE   | HIGH      | C   | 3                   |
| T31B | T31B-04868 | Krom            | VERY HIGH  | MODERATE   | VERY HIGH | В   | 2                   |
| T31B | T31B-04873 |                 | VERY HIGH  | MODERATE   | VERY HIGH | С   | 3                   |
| T31C | T31C-04796 | Mngeni          | HIGH       | MODERATE   | HIGH      | С   | 2                   |
| T31C | T31C-04866 | Mzimvubu        | MODERATE   | MODERATE   | MODERATE  | B/C | 2                   |
| T31C | T31C-04879 | Nyongo          | MODERATE   | VERY HIGH  | VERY HIGH | C   | 3                   |
| T31D | T31D-04926 | Mzimvubu        | HIGH       | MODERATE   | HIGH      | С   | 2                   |
| T31D | T31D-04936 | Riet            | VERY HIGH  | MODERATE   | VERY HIGH | C/D | 3                   |
| T31D | T31D-05030 | Riet            | HIGH       | LOW        | HIGH      | С   | 2                   |
| T31D | T31D-05060 |                 | HIGH       | MODERATE   | HIGH      | D   | 2                   |
| T31D | T31D-05076 | Mzimvubu        | VERY HIGH  | VERY LOW   | VERY HIGH | C   | 3                   |
| T31E | T31E-04836 | Tswereka        | HIGH       | MODERATE   | HIGH      | В   | 2                   |
| T31E | T31E-04910 | Malithasana     | HIGH       | MODERATE   | HIGH      | D   | 2                   |
| T31E | T31E-04931 | Tswereka        | HIGH       | HIGH       | HIGH      | C   | 2                   |
| T31E | T31E-05013 | Tswereka        | HIGH       | MODERATE   | HIGH      | D   | 3                   |
| T31E | T31E-05055 |                 | VERY HIGH  | MODERATE   | VERY HIGH | С   | 3                   |
| T31F | T31F-05108 |                 | VERY HIGH  | LOW        | VERY HIGH | D   | 3                   |
| T31F | T31F-05111 | Mzimvubu        | HIGH       | VERY LOW   | HIGH      | В   | 3                   |
| T31F | T31F-05112 | Mzimvubu        | VERY HIGH  | LOW        | VERY HIGH | С   | 3                   |

### Table 2.1 PES, EI, ES and EIS categories for wetlands at the SQ scale

| Quat | SQ         | Main river name | Wetland El | Wetland ES | EIS       | PES | Wetland<br>priority |
|------|------------|-----------------|------------|------------|-----------|-----|---------------------|
| T31F | T31F-05134 |                 | VERY HIGH  | MODERATE   | VERY HIGH | D   | 2                   |
| T31G | T31G-05071 | Mzimvubu        | VERY HIGH  | MODERATE   | VERY HIGH | D   | 2                   |
| T31H | T31H-05177 | Mvenyane        | HIGH       | LOW        | HIGH      | В   | 2                   |
| T31H | T31H-05324 | Mvenyane        | HIGH       | VERY LOW   | HIGH      | C/D | 2                   |
| T31J | T31J-05257 | Mzimvubu        | HIGH       | MODERATE   | HIGH      | D   | 2                   |
| T31J | T31J-05551 | Mzimvubu        | HIGH       | VERY LOW   | HIGH      | D   | 2                   |
| T31J | T31J-05582 | Ngwekazana      | HIGH       | LOW        | HIGH      | D   | 2                   |
| T31J | T31J-05588 | Mzimvubu        | HIGH       | MODERATE   | HIGH      | D   | 2                   |
| T32A | T32A-04907 | Mzintlanga      | VERY HIGH  | MODERATE   | VERY HIGH | D   | 3                   |
| T32A | T32A-04965 | Mzintlava       | VERY HIGH  | MODERATE   | VERY HIGH | С   | 3                   |
| T32B | T32B-05103 | Mzintlava       | VERY HIGH  | MODERATE   | VERY HIGH | C/D | 2                   |
| T32B | T32B-05116 |                 | VERY HIGH  | HIGH       | VERY HIGH | С   | 4                   |
| T32B | T32B-05184 | Mzintlava       | VERY HIGH  | MODERATE   | VERY HIGH | D   | 2                   |
| T32C | T32C-05219 | Mill Stream     | HIGH       | MODERATE   | HIGH      | С   | 2                   |
| T32C | T32C-05243 | aManzamnyama    | VERY HIGH  | MODERATE   | VERY HIGH | D   | 3                   |
| T32C | T32C-05273 | Mzintlava       | HIGH       | HIGH       | HIGH      | D   | 3                   |
| T32C | T32C-05313 | Mzintlava       | HIGH       | MODERATE   | HIGH      | B/C | 4                   |
| T32C | T32C-05378 |                 | HIGH       | MODERATE   | HIGH      | C/D | 2                   |
| T32D | T32D-05172 | Droewig         | VERY HIGH  | MODERATE   | VERY HIGH | С   | 3                   |
| T32D | T32D-05352 | Mzintlava       | HIGH       | MODERATE   | HIGH      | D   | 3                   |
| T32D | T32D-05373 | Mzintlava       | HIGH       | MODERATE   | HIGH      | D/E | 3                   |
| T32F | T32F-05464 | Mzintlava       | HIGH       | LOW        | HIGH      | D   | 3                   |
| T32G | T32G-05536 | Mzintlavana     | HIGH       | LOW        | HIGH      | C/D | 2                   |
| T32G | T32G-05609 | Mbandana        | HIGH       | LOW        | HIGH      | С   | 2                   |
| T32H | T32H-05842 | Mzintlava       | HIGH       | LOW        | HIGH      | С   | 3                   |
| T33A | T33A-04887 | Mafube          | HIGH       | HIGH       | HIGH      | С   | 2                   |
| T33A | T33A-04892 | Kinira          | HIGH       | VERY LOW   | HIGH      | С   | 2                   |
| T33A | T33A-04898 | Makomorin       | HIGH       | LOW        | HIGH      | В   | 2                   |
| T33A | T33A-04903 | Kinira          | HIGH       | MODERATE   | HIGH      | C/D | 2                   |
| T33A | T33A-04928 |                 | HIGH       | MODERATE   | HIGH      | D   | 3                   |
| T33A | T33A-04983 | Mafube          | HIGH       | MODERATE   | HIGH      | С   | 2                   |
| T33A | T33A-04990 | Kinira          | HIGH       | LOW        | HIGH      | С   | 3                   |
| T33A | T33A-04991 |                 | HIGH       | VERY LOW   | HIGH      | С   | 3                   |
| T33A | T33A-05011 | Kinira          | HIGH       | LOW        | HIGH      | С   | 2                   |
| T33B | T33B-04912 | Seeta           | HIGH       | VERY LOW   | HIGH      | С   | 2                   |
| T33B | T33B-04939 | Mabele          | HIGH       | LOW        | HIGH      | C/D | 2                   |
| T33B | T33B-04956 | Mosenene        | HIGH       | LOW        | HIGH      | D/E | 2                   |
| T33B | T33B-05005 | Jordan          | VERY HIGH  | VERY LOW   | VERY HIGH | D   | 2                   |
| T33B | T33B-05051 | Mabele          | HIGH       | VERY LOW   | HIGH      | C/D | 2                   |
| T33B | T33B-05066 | Mabele          | HIGH       | VERY LOW   | HIGH      | D   | 2                   |
| T33B | T33B-05072 |                 | HIGH       | VERY LOW   | HIGH      | C/D | 2                   |
| T33C | T33C-05131 | Morulane        | HIGH       | LOW        | HIGH      | C/D | 2                   |
| T33D | T33D-05063 | Kinira          | VERY HIGH  | VERY LOW   | VERY HIGH | D   | 2                   |
| T33D | T33D-05106 | Pabatlong       | HIGH       | VERY HIGH  | VERY HIGH | C/D | 2                   |
| T33D | T33D-05150 | Kinira          | HIGH       | LOW        | HIGH      | C/D | 2                   |
| T33E | T33E-05213 | Kinira          | HIGH       | MODERATE   | HIGH      | C/D | 2                   |
| T33E | T33E-05367 | Somabadi        | MODERATE   | VERY HIGH  | VERY HIGH | C/D | 2                   |
| T33F | T33F-05285 | Rolo            | MODERATE   | VERY LOW   | HIGH      | D   | 2                   |
| T33F | T33F-05326 | Kinira          | HIGH       | VERY LOW   | HIGH      | C/D | 2                   |
| T33F | T33F-05398 | Kinira          | HIGH       | VERY LOW   | HIGH      | C/D | 2                   |
| T33F | T33F-05439 | Ncome           | MODERATE   | VERY LOW   | HIGH      | C/D | 2                   |


| Quat | SQ         | Main river name  | Wetland El | Wetland ES | EIS       | PES | Wetland<br>priority |
|------|------------|------------------|------------|------------|-----------|-----|---------------------|
| T33G | T33G-05395 | Kinira           | HIGH       | LOW        | HIGH      | C/D | 2                   |
| T33G | T33G-05587 | Cabazi           | MODERATE   | HIGH       | HIGH      | C/D | 2                   |
| T33G | T33G-05659 | Mzimvubu         | MODERATE   | MODERATE   | MODERATE  | В   | 3                   |
| Т33Н | T33H-05638 | Mnceba           | MODERATE   | VERY HIGH  | VERY HIGH | С   | 2                   |
| T33H | T33H-05680 | Mzimvubu         | MODERATE   | LOW        | HIGH      | С   | 2                   |
| Т33Н | T33H-05803 | Caba             | HIGH       | MODERATE   | HIGH      | C/D | 2                   |
| Т33Н | T33H-05821 | Mzimvubu         | MODERATE   | MODERATE   | MODERATE  | С   | 2                   |
| T33J | T33J-05834 | Mzimvubu         | MODERATE   | LOW        | MODERATE  | С   | 2                   |
| T34A | T34A-05394 | Vuvu             | HIGH       | HIGH       | HIGH      | B/C | 2                   |
| T34A | T34A-05404 | Thina            | HIGH       | VERY LOW   | HIGH      | С   | 2                   |
| T34A | T34A-05408 | Khohlong         | HIGH       | VERY LOW   | HIGH      | С   | 2                   |
| T34A | T34A-05415 | Thina            | HIGH       | VERY LOW   | HIGH      | B/C | 2                   |
| T34B | T34B-05269 | Nxotshana        | HIGH       | VERY LOW   | HIGH      | B/C | 2                   |
| T34B | T34B-05275 | Phiri-e-ntso     | HIGH       | VERY LOW   | HIGH      | B/C | 2                   |
| T34B | T34B-05351 | Thina            | HIGH       | VERY LOW   | HIGH      | C/D | 2                   |
| T34B | T34B-05356 | Thina            | HIGH       | LOW        | HIGH      | C/D | 2                   |
| T34B | T34B-05385 | Thina            | HIGH       | VERY LOW   | HIGH      | C/D | 2                   |
| T34C | T34C-05168 | Tinana           | HIGH       | VERY LOW   | HIGH      | В   | 2                   |
| T34C | T34C-05292 | Tinana           | MODERATE   | LOW        | HIGH      | С   | 2                   |
| T34D | T34D-05412 | Thina            | HIGH       | LOW        | HIGH      | С   | 2                   |
| T34D | T34D-05460 | Thina            | HIGH       | LOW        | HIGH      | D   | 2                   |
| T34E | T34E-05495 | Bradgate se Loop | HIGH       | VERY LOW   | HIGH      | B/C | 2                   |
| T34E | T34E-05503 | Luzi             | HIGH       | VERY LOW   | HIGH      | С   | 1                   |
| T34E | T34E-05507 | Luzi             | HIGH       | LOW        | HIGH      | С   | 2                   |
| T34F | T34F-05512 | Luzi             | HIGH       | VERY LOW   | HIGH      | С   | 2                   |
| T34G | T34G-05543 | Thina            | HIGH       | LOW        | HIGH      | С   | 2                   |
| T34G | T34G-05634 | Nxaxa            | VERY HIGH  | LOW        | VERY HIGH | C/D | 2                   |
| T34G | T34G-05667 | Thina            | MODERATE   | LOW        | MODERATE  | B/C | 2                   |
| T34H | T34H-05598 | Thina            | HIGH       | MODERATE   | HIGH      | D   | 2                   |
| T34H | T34H-05772 | Thina            | HIGH       | LOW        | HIGH      | В   | 3                   |
| T34H | T34H-05826 | Ngcothi          | HIGH       | LOW        | HIGH      | B/C | 3                   |
| T34K | T34K-05835 | Thina            | HIGH       | MODERATE   | HIGH      | B/C | 3                   |
| T35A | T35A-05596 | Tsitsana         | HIGH       | VERY LOW   | HIGH      | B/C | 2                   |
| T35A | T35A-05648 | Tsitsa           | HIGH       | LOW        | HIGH      | В   | 2                   |
| T35A | T35A-05750 | Tsitsa           | HIGH       | VERY LOW   | HIGH      | C/D | 2                   |
| T35B | T35B-05709 | Pot              | HIGH       | VERY LOW   | HIGH      | B/C | 2                   |
| T35B | T35B-05798 | Pot              | HIGH       | LOW        | HIGH      | C/D | 2                   |
| T35B | T35B-05815 | Little Pot       | VERY HIGH  | LOW        | VERY HIGH | С   | 2                   |
| T35C | T35C-05858 | Mooi             | HIGH       | VERY LOW   | HIGH      | С   | 2                   |
| T35C | T35C-05874 | Мооі             | VERY HIGH  | MODERATE   | VERY HIGH | D   | 3                   |
| T35C | T35C-05930 | Klein-Mooi       | HIGH       | VERY LOW   | HIGH      | C   | 2                   |
| T35D | T35D-05721 | iTsitsa          | HIGH       | LOW        | HIGH      | D   | 2                   |
| T35D | T35D-05844 | Mooi             | HIGH       | MODERATE   | HIGH      | В   | 3                   |
| T35E | T35E-05780 | Gqukunqa         | MODERATE   | VERY LOW   | MODERATE  | В   | 2                   |
| T35E | T35E-05908 | iTsitsa          | HIGH       | MODERATE   | HIGH      | C   | 4                   |
| T35E | T35E-05977 | iTsitsa          | MODERATE   | HIGH       | HIGH      | С   | 4                   |
| T35F | T35F-05973 | Kuntombizininzi  | VERY HIGH  | MODERATE   | VERY HIGH | В   | 4                   |
| T35F | T35F-05999 | Inxu             | HIGH       | LOW        | HIGH      | B/C | 3                   |
| T35F | T35F-06020 | Inxu             | VERY HIGH  | LOW        | VERY HIGH | D   | 3                   |
| T35G | T35G-06002 | Inxu             | HIGH       | LOW        | HIGH      | С   | 3                   |
| T35G | T35G-06021 | Inxu             | HIGH       | VERY LOW   | HIGH      | С   | 3                   |

| Quat | SQ                      | Main river name | Wetland El | Wetland ES | EIS       | PES | Wetland<br>priority |
|------|-------------------------|-----------------|------------|------------|-----------|-----|---------------------|
| T35G | T35G-06069              | Gatberg         | VERY HIGH  | LOW        | VERY HIGH | В   | 4                   |
| T35G | T35G-06074              | Gatberg         | HIGH       | VERY LOW   | HIGH      | B/C | 4                   |
| T35G | T35G-06099              | Gatberg         | VERY HIGH  | LOW        | VERY HIGH | В   | 3                   |
| T35G | T35G-06100              |                 | MODERATE   | VERY LOW   | MODERATE  | С   | 2                   |
| T35G | T35G-06108              | Inxu            | HIGH       | LOW        | HIGH      | В   | 4                   |
| T35G | T35G-06118              | Gatberg         | VERY HIGH  | MODERATE   | VERY HIGH | B/C | 4                   |
| T35G | T35G-06133              |                 | HIGH       | LOW        | HIGH      | С   | 3                   |
| T35G | T35G-06135              | Gqaqala         | VERY HIGH  | MODERATE   | VERY HIGH | С   | 4                   |
| T35G | T35G-06148              |                 | HIGH       | VERY HIGH  | VERY HIGH | В   | 4                   |
| T35G | T35G-06169              | Gqaqala         | HIGH       | LOW        | HIGH      | С   | 2                   |
| T35G | T35G-06179              |                 | HIGH       | LOW        | HIGH      | С   | 2                   |
| T35H | T35H-06024              | Inxu            | MODERATE   | LOW        | MODERATE  | С   | 2                   |
| T35H | T35H-06053              | Inxu            | MODERATE   | MODERATE   | MODERATE  | С   | 2                   |
| T35H | T35H-06186              | Umnga           | HIGH       | HIGH       | HIGH      | С   | 2                   |
| T35H | T35H-06240              | KuNgindi        | VERY HIGH  | MODERATE   | VERY HIGH | С   | 3                   |
| T35H | T35H-06282              | Umnga           | HIGH       | MODERATE   | HIGH      | В   | 2                   |
| T35J | T35J-06106              | Ncolosi         | MODERATE   | MODERATE   | MODERATE  | D   | 2                   |
| T35K | T35K-05897              | Culunca         | MODERATE   | HIGH       | HIGH      | D   | 2                   |
| T35K | T35K-05904              | Tyira           | MODERATE   | HIGH       | HIGH      | D   | 2                   |
| T35K | T35K-06037              | iTsitsa         | MODERATE   | VERY HIGH  | VERY HIGH | С   | 4                   |
| T35K | T35K-06167              | Xokonxa         | HIGH       | MODERATE   | HIGH      | С   | 3                   |
| T35L | T35L-05976              | iTsitsa         | VERY HIGH  | HIGH       | VERY HIGH | С   | 4                   |
| T35L | T35L-06190              | iTsitsa         | HIGH       | LOW        | HIGH      | В   | 4                   |
| T35L | T35L-06226              | Ngcolora        | HIGH       | HIGH       | HIGH      | D   | 2                   |
| T35M | T35M-06187              | iTsitsa         | MODERATE   | MODERATE   | MODERATE  | В   | 4                   |
| T35M | T35M-06275              | Ruze            | HIGH       | MODERATE   | HIGH      | В   | 2                   |
| T36A | T36A-06250              | Mzimvubu        | MODERATE   | LOW        | MODERATE  | С   | 4                   |
| T36B | T36B-06391<br>uaternary | Mzimvubu        | VERY HIGH  | MODERATE   | VERY HIGH | C/D | 4                   |

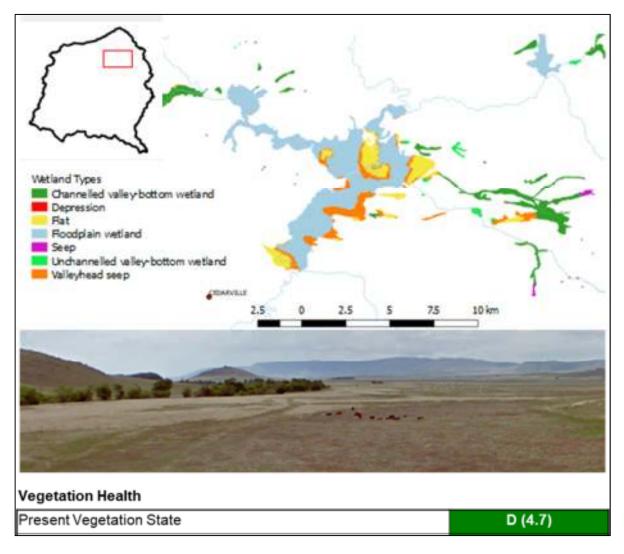
Quat: quaternary

## 2.5 RESOURCE QUALITY OBJECTIVES FOR HIGH PRIORITY INDIVIDUAL WETLAND RESOURCE UNITS

There are hundreds of wetlands within the Mzimvubu WMA and RQOs cannot be determined individually for all of them, hence groupings according to SQs (Table 2.1), but some are important enough to warrant more detailed information. These were highlighted in the Wetland EcoClassification Report (DWS, 2017a). As detailed data of these High and Very High priority individual wetlands were limited however, Google Earth© was used to conduct level 1 WET-Health assessments (MacFarlane et al., 2007) for floodplains and to verify PES ratings in the PESEIS database for Channelled valley bottom wetlands. The HGM types of wetlands with High or Very High priority are shown in Figure 2.2. HGM types were taken from NFEPA spatial data (Nel et al., 2011). High and Very High priority wetlands formed three distinct groupings of wetland HGM types. These were mainly 1) floodplain wetlands and a few associated Channelled valley bottoms and flats in the Matatiele (Kinira), Cedarville (Mzimvubu floodplain) and Ugie (Gatberg) areas, 2) higher density seep and Channelled valley bottom wetlands in zones 1 (especially quaternary T31B), 2 (especially quaternary T31D), 3 (especially quaternaries T3A-D) and 5 (especially in the Ugie and Maclear vicinity) in higher lying areas, and 3) Channelled valley bottom wetlands (which more likely are inset or bench floodplain features) along the main channels of the Tsitsa, Thina and Mzintlava rivers, mostly towards confined valley and gorge areas in the lower reaches.



## Figure 2.2 Wetland HGM types of High and Very High priority wetlands only


The vegetation component of WET-Health (Version 2) was used as a proxy for determining the PES for large floodplain complexes. Both the PES (based on the overall impact score) as well as the impact ratings were used to develop more detailed RQOs for important floodplains. The data are summarised here (and repeated from the Wetland EcoClassification Report; DWS, 2017a) since they underpin the RQOs outlined below.

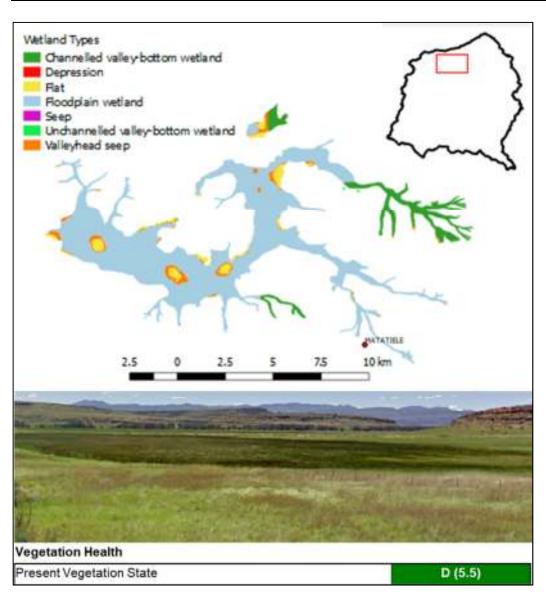
## 2.5.1 Mzimvubu floodplains

The extent of the Mzimvubu floodplains near Cedarville that were assessed are shown in **Figure 2.3**. The vegetation component of WET-Health demonstrates an ecological category of D with a negative trajectory. The extent and nature of disturbances within the floodplains of this wetland complex are shown in **Table 2.2**. Agricultural use of the floodplains, as well as the damming of water, comprise the main impacts.

## Table 2.2 Extent of disturbance within the Mzimvubu floodplains

| Disturbance Class                    | E            | Total Extent (%) |              |                 |
|--------------------------------------|--------------|------------------|--------------|-----------------|
| Disturbance class                    | Floodplain 1 | Floodplain 2     | Floodplain 3 | Wetland Complex |
| Infrastructure                       | 3            | 3                | 2            | 2.6             |
| Shallow flooding by dams             | 3            | 5                | 15           | 8.4             |
| Agricultural activities / Crop lands | 15           | 25               | 25           | 20.9            |
| Perennial pastures                   | 15           | 15               | 15           | 15.0            |
| Canals / trenching /furrows          | 2            | 2                | 2            | 2.0             |
| Old / abandoned lands                | 5            | 5                | 10           | 7.1             |
| Dense alien vegetation patches.      | 3            | 3                | 3            | 3.0             |




## Figure 2.3 Mzimvubu floodplains that were assessed with WET-Health Level 2 using Google Earth©

## 2.5.2 Matatiele floodplains

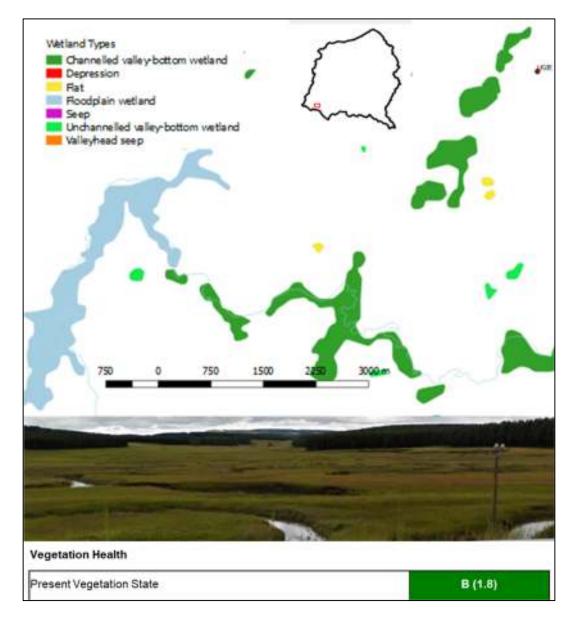
The extent of the Matatiele floodplains that were assessed are shown in **Figure 2.4**. The vegetation component of WET-Health demonstrates an ecological category of D with a negative trajectory. The extent and nature of disturbances within the floodplains of this wetland complex are shown in **Table 2.3**. Agricultural use of the floodplains is the major impact.

## Table 2.3 Extent of disturbance within the Matatiele floodplains

| Disturbance Class                    | Extent (%    | 6) of HGM    | Total Extent (%) |
|--------------------------------------|--------------|--------------|------------------|
| Disturbance class                    | Floodplain 1 | Floodplain 2 | Wetland Complex  |
| Infrastructure                       | 2            | 8            | 2.4              |
| Shallow flooding by dams             | 2            | 5            | 2.2              |
| Agricultural activities / Crop lands | 35           | 25           | 34.3             |
| Perennial pastures                   | 15           | 10           | 14.7             |
| Canals / trenching /furrows          | 2            | 2            | 2.0              |
| Old / abandoned lands                | 10           | 5            | 9.7              |
| Dense alien vegetation patches       | 3            | 3            | 3.0              |



## Figure 2.4 Mataiele floodplains that were assessed with WET-Health Level 2 using Google Earth©


## 2.5.3 Gatberg floodplains

The extent of the Gatberg floodplains near Ugie that were assessed are shown in **Figure 2.5**. The vegetation component of WET-Health demonstrates an ecological category of B with a stable trajectory. The extent and nature of disturbances within the floodplains of this wetland complex are

Page 2-9

shown in **Table 2.4**. Commercial forestry encroachment into wetlands and some agricultural use of the floodplains comprise the majority of impacts.

| Disturbance Class                    | Extent (%    | 6) of HGM    | Total Extent (%) |
|--------------------------------------|--------------|--------------|------------------|
| Disturbance class                    | Floodplain 1 | Floodplain 2 | Wetland Complex  |
| Infrastructure                       | 1            | 1            | 1.0              |
| Shallow flooding by dams             | 0            | 0            | 0.0              |
| Agricultural activities / Crop lands | 0            | 5            | 3.5              |
| Perennial pastures                   | 2            | 2            | 2.0              |
| Canals / trenching /furrows          | 1            | 1            | 1.0              |
| Old / abandoned lands                | 0            | 2            | 1.4              |
| Dense alien vegetation patches.      | 0            | 1            | 0.7              |
| Commercial plantations / forestry    | 10           | 10           | 10.0             |



## Figure 2.5 Gatberg floodplains that were assessed with WET-Health Level 2 using Google Earth $\ensuremath{\mathbb{C}}$

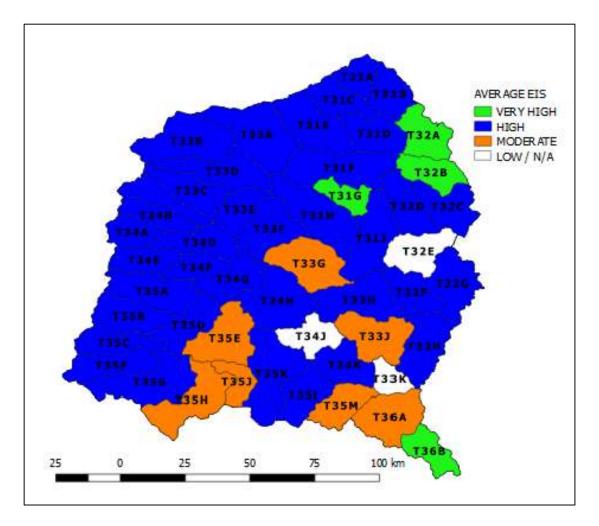
A summary of these high priority floodplains is shown in **Table 2.5** with the proposed Target Ecological Category (TEC) and strategies to achieve this category.

| Name                    | Includes SQs                                                           | Size (Ha) | Present<br>vegetation<br>state | TEC | How to achieve TEC                                                                                                                                                                                                                                                                               |
|-------------------------|------------------------------------------------------------------------|-----------|--------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mzimvubu<br>floodplain  | T31F-05112,<br>T31F-05108,<br>T31F-05111,<br>T31D-05076,<br>T31E-05013 | 2 678     | D                              | С   | 1) Remove alien trees along the active channel; 2) restrict, reduce and manage agricultural activities within wetland; 3) no additional dams within wetland area.                                                                                                                                |
| Matatiele<br>floodplain | T33A-04990,<br>T33A-04991,<br>T33A-05011                               | 4 837     | D                              | С   | <ol> <li>Remove alien trees along the<br/>active channel and wattle stands;</li> <li>restrict, reduce and manage<br/>agricultural activities within<br/>wetland, especially floodplain<br/>manipulation; 3) no additional<br/>dams within wetland area; 4)<br/>restrict urban sprawl.</li> </ol> |
| Gatberg<br>floodplain   | T35G06099,<br>T35G06133,<br>T35G-06118                                 | 198       | В                              | В   | 1) Continue current management<br>regime; 2) prevent additional<br>forestry within wetlands; 3)<br>restrict agricultural<br>encroachment.                                                                                                                                                        |

Table 2.5Validated PES and proposed TEC for floodplain wetlands with High or Very<br/>High priority

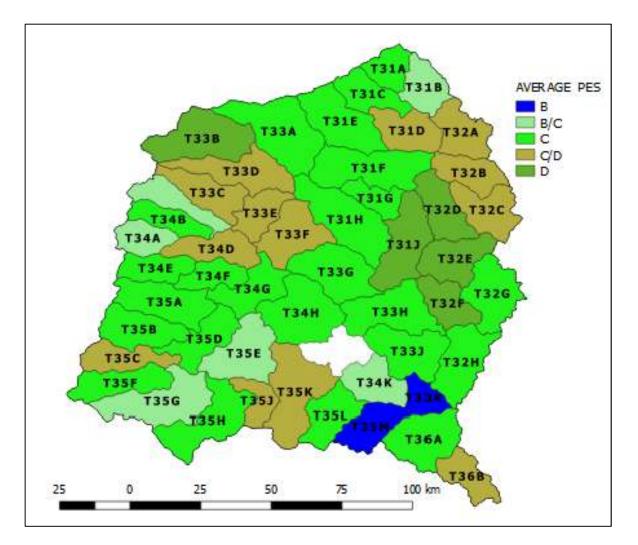
For high priority Channelled and unchannelled valley bottom wetlands, flats and seeps, PESEIS (DWS, 2014a) metrics for the riparian / wetland assessments were used as a starting point and were verified using Google Earth©. The assessment was based on the methodology of the PESEIS project i.e. the rating of wetland modification as well as habitat continuity modification, but focussed on the wetland components within each SQ. It should be noted that while the PESEIS project focussed directly on the delineated SQ (i.e. a section of river channel), this assessment focussed on all wetland components within the SQ catchment and included wetlands not necessarily directly linked to the main river of the delineated SQ. The results of this validation are shown in **Table 2.1** and **Table 3.6** for all wetlands with a priority of 3 or more. These wetlands therefore have higher confidence baseline EcoStatus and impact data, which enabled more detailed RQOs to be determined.

RQOs were not determined for high priority wetlands associated with main rivers i.e. group 3 above, which comprise channelled valley bottom wetlands (which more likely are inset or bench floodplain features) along the main channels of the Tsitsa, Thina and Mzintlava rivers, mostly towards confined valley and gorge areas in the lower reaches. RQOs for these wetlands are incorporated in the river RQOs.


## 3 WETLAND RESOURCE QUALITY OBJECTIVES

## 3.1 BROAD LEVEL NARRATIVE RESOURCE QUALITY OBJECTIVES FOR WETLANDS ACROSS THE WMA

The average EIS of quaternary catchments within the T3 primary catchment is listed in **Table 3.1**, and shown in **Figure 3.1**, while the average PES category is listed in **Table 3.2** and shown in **Figure 3.2**. In keeping with the *National Wetland Position Paper* (DWS, 2014b), which has proposed an objective that there be no net loss of wetland ecosystem, the broad scale narrative RQOs specify that the average quaternary level PES and EIS be maintained and not permitted to deteriorate.


## Table 3.1Average wetland EIS (calculated at the quaternary catchment scale) for<br/>quaternary catchments in the Mzimvubu WMA

| Average EIS | Quaternary catchments                                                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low         | Т32Е, Т33К                                                                                                                                                                                                                            |
| Moderate    | T33G, T33J, T35E, T35H, T35J, T35M, T36A                                                                                                                                                                                              |
| High        | T31A, T31B, T31C, T31D, T31E, T31F, T31H, T31J, T32C, T32D, T32F, T32G,<br>T32H, T33A, T33B, T33C, T33D, T33E, T33F, T33H, T34A, T34B, T34C, T34D,<br>T34E, T34F, T34G, T34H, T34K, T35A, T35B, T35C, T35D, T35F, T35G, T35K,<br>T35L |
| Very High   | Т31G, Т32А, Т32В, Т36В                                                                                                                                                                                                                |



- Figure 3.1 Average wetland EIS at the quaternary catchment scale
- Table 3.2Average wetland PES (calculated at the quaternary catchment scale) for<br/>quaternary catchments in the Mzimvubu WMA

| Average PES | Quaternary catchments                                                                                                                          |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| В           | ТЗЗК, ТЗ5М                                                                                                                                     |  |  |  |
| B/C         | T31B, T34A, T34C, T34K, T35E, T35G                                                                                                             |  |  |  |
| С           | T31A, T31C, T31E, T31F, T31G, T31H, T32G, T32H, T33A, T33G, T33H, T33J, T34B, T34E, T34F, T34G, T34H, T35A, T35B, T35D, T35F, T35H, T35L, T36A |  |  |  |
| C/D         | T31D, T32A, T32B, T32C, T33C, T33D, T33E, T33F, T34D, T35C, T35J, T35K,<br>T36B                                                                |  |  |  |
| D           | T31J, T32D, T32E, T32F, T33B                                                                                                                   |  |  |  |



### Figure 3.2 Average wetland PES category at the quaternary catchment scale

### 3.2 CATCHMENT LEVEL RESOURCE QUALITY OBJECTIVES FOR WETLANDS

Catchment level RQOs were developed at the sub-quaternary scale and are listed in Table 3.3.

| Table 3.3 | Catchment level RQOs for wetlands. RQOs apply to all SQs listed in Table 2.1 |
|-----------|------------------------------------------------------------------------------|
|-----------|------------------------------------------------------------------------------|

| Component         | Sub-<br>component               | RQO                                                                                                                                              |           | Indicator                                                                                            | Metivetien                                      |
|-------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                   |                                 | Narrative                                                                                                                                        | Numerical | Indicator                                                                                            | Motivation                                      |
| Water<br>quantity | Flow or<br>inundation<br>regime | Water quantity (i.e.<br>flow and inundation<br>regime) must<br>maintain wetlands in<br>good condition<br>where practical.                        |           | Flow (water<br>quantity) or<br>inundation regime<br>is sufficient to<br>maintain the<br>current PES. | Implementation<br>of the EWR<br>where possible. |
|                   | Species<br>sensitive to<br>flow | Water quantity (i.e.<br>flow and inundation<br>regime) must<br>maintain<br>populations of flow<br>sensitive wetland<br>species known to<br>occur |           | Flow (water<br>quantity) or<br>inundation regime<br>is sufficient to<br>maintain the<br>current PES. |                                                 |
| Water<br>quality  | Chemistry and sediments         | Water quantity (i.e. chemistry and                                                                                                               |           | Water quality is<br>sufficient to                                                                    | Implementation of the EWR                       |

| •                     | Sub-                                               | RQ                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                           | La d'a stan                                                           | Motivation                                                                                                                                                                                         |  |
|-----------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Component             | component                                          | Narrative                                                                                                                                                                                                                                             | Numerical                                                                                                                                                                                                   | Indicator                                                             |                                                                                                                                                                                                    |  |
|                       |                                                    | sediments) must<br>maintain wetlands in<br>good condition.                                                                                                                                                                                            |                                                                                                                                                                                                             | maintain the<br>current PES.                                          | where possible.                                                                                                                                                                                    |  |
|                       | Species<br>sensitive to<br>flow                    | Water quality (i.e.<br>chemistry and<br>sediments) must<br>maintain<br>populations of flow<br>sensitive wetland<br>species known to<br>occur.                                                                                                         |                                                                                                                                                                                                             | Water quality is<br>sufficient to<br>maintain the<br>current PES.     |                                                                                                                                                                                                    |  |
| Habitat               | Integrity and condition                            | The PES category<br>of wetlands within<br>each SQ must be<br>maintained<br>according to those<br>listed in <b>Table 2.1</b> .                                                                                                                         | The PES score<br>must be at least<br>equal to the<br>minimum value for<br>the category: >92<br>for A, > 87.4 for<br>A/B, > 82 for B, ><br>77.4 for B/C, > 62<br>for C, > 57.4 for<br>C/D and > 42 for<br>D. | PES                                                                   | The NWRS<br>(DWA, 2013)<br>aims to address<br>the loss of<br>wetlands and to<br>maintain healthy,<br>functional<br>ecosystems.                                                                     |  |
| Habitat /<br>Biota    | Species /<br>habitats<br>sensitive to<br>flow      | Known or listed<br>species or habitats<br>sensitive to flow<br>should be protected<br>and the ES as listed<br>in <b>Table 2.1</b> for<br>each SQ should be<br>maintained.                                                                             |                                                                                                                                                                                                             | ES                                                                    | Overall<br>conservation of<br>sensitive and<br>important<br>species and<br>habitats (SANBI;<br>DWS).                                                                                               |  |
| Biota                 | Threatened,<br>endangered or<br>endemic<br>species | Known threatened,<br>endangered or<br>endemic wetland<br>species should be<br>protected and the EI<br>as listed in <b>Table</b><br><b>2.1</b> for each SQ<br>should be<br>maintained.                                                                 |                                                                                                                                                                                                             | EI                                                                    |                                                                                                                                                                                                    |  |
| Biota                 | taxon richness                                     | Wetland species<br>diversity and<br>community health<br>should be<br>maintained.                                                                                                                                                                      |                                                                                                                                                                                                             | Habitat condition<br>is sufficient to<br>maintain the<br>current PES. | Is based on the<br>premise that if<br>the habitat is<br>present and in<br>good condition,<br>the biota will be<br>maintained.                                                                      |  |
| Ecosystem<br>services | Importance,<br>sensitivity and<br>demand           | The ecosystem<br>services of wetlands<br>in a SQ must be<br>maintained. A<br>measure of this is<br>the EIS, the<br>category of which,<br>must remain the<br>same (or improve)<br>within each SQ<br>according to those<br>listed in <b>Table 2.1</b> . |                                                                                                                                                                                                             | EIS                                                                   | EIS advocated<br>as a surrogate<br>measure of<br>ecosystem<br>services at the<br>SQ scale since it<br>considers<br>diversity (both<br>habitat and<br>species),<br>sensitivity, risk<br>and demand. |  |

#### 3.3 RESOURCE QUALITY OBJECTIVES FOR HIGH PRIORITY INDIVIDUAL WETLANDS

More detailed RQOs were developed for wetlands of High or Very High priority. Floodplain RQOs are listed in **Table 3.4** while RQOs for High priority Channelled and unchannelled valley bottoms, flats and seeps are listed in **Table 3.5**.

| Table 3.4 | RQOs for high priority floodplains |
|-----------|------------------------------------|
|-----------|------------------------------------|

| 00-                                                                                    | 0              | Sub-                                                                                                    | R                                                                                                                                                                                                         | 20                                                                                                                                                                                                       | Indicator                                                                                          |  |
|----------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| SQs                                                                                    | Component      | component                                                                                               | Narrative                                                                                                                                                                                                 | Numerical                                                                                                                                                                                                | Indicator                                                                                          |  |
| Mzimvubu I                                                                             | Floodplains    | T                                                                                                       | T                                                                                                                                                                                                         | T                                                                                                                                                                                                        |                                                                                                    |  |
|                                                                                        | Water quantity | Hydrology                                                                                               | The quantity and<br>timing of inputs,<br>and the<br>distribution and<br>retention<br>patterns within<br>the wetland must<br>be maintained to<br>avoid the loss of<br>wetland<br>hydrological<br>function. | Data not<br>available.                                                                                                                                                                                   | Wetland<br>hydrology score.<br>Detailed<br>assessment of<br>wetland hydrology<br>using a PES tool. |  |
| 7045                                                                                   |                | Shallow flooding<br>by damming                                                                          | The current<br>extent of<br>damming within<br>the wetland<br>complex should<br>not be permitted<br>to increase                                                                                            | The aerial extent<br>of damming<br>within the<br>delineated<br>wetland area<br>shall not exceed<br>8.4% (refer to<br><b>Table 2.2</b> ).                                                                 | Impact score<br>within WET-<br>Health.                                                             |  |
| T31F-<br>05112,<br>T31F-<br>05108,<br>T31F-<br>05111,<br>T31D-<br>05076,<br>T31E-05013 | Habitat        | General wetland<br>vegetation                                                                           | The wetland<br>vegetation must<br>be maintained to<br>ensure that the<br>ecosystem<br>structure and<br>function are<br>maintained.                                                                        | Present<br>condition is a D<br>(impact score of<br>4.7), while the<br>TEC is a C<br>(impact score of<br>3.9 or less).<br>The numerical<br>criteria should<br>equate to the<br>same or<br>improved value. | Impact score:<br>Wetland<br>vegetation score<br>and PES as<br>assessed with<br>WET-Health.         |  |
|                                                                                        |                | Loss /<br>defragmentation<br>due to direct<br>agricultural<br>activities                                | Direct<br>agricultural<br>activities and<br>croplands should<br>not be permitted<br>to increase in<br>extent within the<br>wetland<br>complex.                                                            | The aerial extent<br>of agricultural<br>activities and<br>croplands within<br>the delineated<br>wetland area<br>shall not exceed<br>20% (refer to<br><b>Table 2.2</b> ).                                 | Impact score<br>(aerial extent) as<br>assessed with<br>WET-Health.                                 |  |
|                                                                                        |                | Loss /<br>defragmentation<br>due to<br>infrastructure,<br>including canals,<br>furrows and<br>trenching | Additional<br>development of<br>infrastructure<br>should not be<br>permitted within<br>the wetland<br>complex.                                                                                            | The aerial extent<br>of infrastructure,<br>including canals,<br>furrows and<br>trenching, within<br>the delineated<br>wetland area                                                                       | Impact score<br>(aerial extent) as<br>assessed with<br>WET-Health.                                 |  |

|                                    |                | Sub-                           | RG                                                                                                                                                                                                        | 20                                                                                                                                                                                                       | Indicator                                                                                          |  |
|------------------------------------|----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| SQs                                | Component      | component                      | Narrative                                                                                                                                                                                                 | Numerical                                                                                                                                                                                                | Indicator                                                                                          |  |
|                                    |                |                                |                                                                                                                                                                                                           | shall not exceed<br>5% (refer to<br><b>Table 2.2</b> ).                                                                                                                                                  |                                                                                                    |  |
|                                    |                | Overall<br>vegetation PES      | The overall<br>wetland PES as<br>indicated by the<br>vegetation<br>component of<br>WET-Health,<br>must be<br>maintained, or<br>the TEC should<br>be achieved.                                             | Present<br>condition is a D<br>(impact score of<br>4.7), while the<br>TEC is a C<br>(impact score of<br>3.9 or less).<br>The numerical<br>criteria should<br>equate to the<br>same or<br>improved value. | Wetland<br>vegetation score<br>and PES as<br>assessed with<br>WET-Health.                          |  |
|                                    | Biota          | Endangered<br>crane species    | Water quantity,<br>vegetation<br>condition and<br>land use<br>practices must<br>be maintained so<br>as to not cause<br>any population<br>decline.                                                         | Data exist but<br>were not<br>available for this<br>assessment                                                                                                                                           | Counts of the<br>number of<br>breeding pairs of<br>crane species.                                  |  |
|                                    |                | Invasive alien<br>vegetation   | Invasive alien<br>vegetation within<br>the wetland<br>complex should<br>be kept in check<br>so as not to<br>increase in aerial<br>extent.                                                                 | The aerial extent<br>of invasive alien<br>vegetation within<br>the delineated<br>wetland area<br>shall not exceed<br>3% (refer to<br><b>Table 2.2</b> ).                                                 | Impact score<br>(aerial extent) as<br>assessed with                                                |  |
|                                    | Water quality  |                                | vater quality indica<br>detailed RQOs rel                                                                                                                                                                 |                                                                                                                                                                                                          |                                                                                                    |  |
| Matatiele Fl                       | oodplains      |                                |                                                                                                                                                                                                           |                                                                                                                                                                                                          |                                                                                                    |  |
| T33A-<br>04990,<br>T33A-<br>04991, | Water quantity | Hydrology                      | The quantity and<br>timing of inputs,<br>and the<br>distribution and<br>retention<br>patterns within<br>the wetland must<br>be maintained to<br>avoid the loss of<br>wetland<br>hydrological<br>function. | Detailed data<br>not available.                                                                                                                                                                          | Wetland<br>hydrology score.<br>Detailed<br>assessment of<br>wetland hydrology<br>using a PES tool. |  |
| T33A-05011                         |                | Shallow flooding<br>by damming | The current<br>extent of<br>damming within<br>the wetland<br>complex should<br>not be permitted<br>to increase                                                                                            | The aerial extent<br>of damming<br>within the<br>delineated<br>wetland area<br>shall not exceed<br>2.2% (refer to<br><b>Table 2.3</b> ).                                                                 | Impact score<br>within WET-<br>Health.                                                             |  |
|                                    | Habitat        | General wetland                | The wetland                                                                                                                                                                                               | Present                                                                                                                                                                                                  | Impact score:                                                                                      |  |

| 800 | Component     | Sub-                                                                                                    | RC                                                                                                                                                            | 20                                                                                                                                                                                                       | Indicator                                                                 |
|-----|---------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| SQs | Component     | component                                                                                               | Narrative                                                                                                                                                     | Numerical                                                                                                                                                                                                | Indicator                                                                 |
|     |               | vegetation                                                                                              | vegetation must<br>be maintained to<br>ensure that the<br>ecosystem<br>structure and<br>function are<br>maintained.                                           | condition is a D<br>(impact score of<br>5.5), while the<br>TEC is a C<br>(impact score of<br>3.9 or less).<br>The numerical<br>criteria should<br>equate to the<br>same or<br>improved value.            | Wetland<br>vegetation score<br>and PES as<br>assessed with<br>WET-Health. |
|     |               | Loss /<br>defragmentation<br>due to direct<br>agricultural<br>activities                                | Direct<br>agricultural<br>activities and<br>croplands should<br>not be permitted<br>to increase in<br>extent within the<br>wetland<br>complex.                | The aerial extent<br>of agricultural<br>activities and<br>croplands within<br>the delineated<br>wetland area<br>shall not exceed<br>34% (refer to<br><b>Table 2.3</b> ).                                 | Impact score<br>(aerial extent) as<br>assessed with<br>WET-Health.        |
|     |               | Loss /<br>defragmentation<br>due to<br>infrastructure,<br>including canals,<br>furrows and<br>trenching | Additional<br>development of<br>infrastructure<br>should not be<br>permitted within<br>the wetland<br>complex.                                                | The aerial extent<br>of infrastructure,<br>including canals,<br>furrows and<br>trenching, within<br>the delineated<br>wetland area<br>shall not exceed<br>4.5% (refer to<br><b>Table 2.3</b> ).          | Impact score                                                              |
|     |               | Overall<br>vegetation PES                                                                               | The overall<br>wetland PES as<br>indicated by the<br>vegetation<br>component of<br>WET-Health,<br>must be<br>maintained, or<br>the TEC should<br>be achieved. | Present<br>condition is a D<br>(impact score of<br>5.5), while the<br>TEC is a C<br>(impact score of<br>3.9 or less).<br>The numerical<br>criteria should<br>equate to the<br>same or<br>improved value. | Wetland<br>vegetation score<br>and PES as<br>assessed with<br>WET-Health. |
|     | Biota         | Invasive alien<br>vegetation                                                                            | the wetland complex should                                                                                                                                    | The aerial extent<br>of invasive alien<br>vegetation within<br>the delineated<br>wetland area<br>shall not exceed                                                                                        | Impact score<br>(aerial extent) as<br>assessed with                       |
|     | Water quality | Detailed data of water quality indicators for this wetland were not                                     |                                                                                                                                                               |                                                                                                                                                                                                          |                                                                           |

|                          | Sub- RQO       |                                                                                                         | 20                                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                    |
|--------------------------|----------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| SQs                      | Component      | component                                                                                               | Narrative                                                                                                                                                                                                 | Numerical                                                                                                                                                                                     | Indicator                                                                                          |
| Gatberg Flo              | odplains       | 1                                                                                                       | 1                                                                                                                                                                                                         | 1                                                                                                                                                                                             |                                                                                                    |
|                          | Water quantity | Hydrology                                                                                               | The quantity and<br>timing of inputs,<br>and the<br>distribution and<br>retention<br>patterns within<br>the wetland must<br>be maintained to<br>avoid the loss of<br>wetland<br>hydrological<br>function. | Detailed data<br>not available.                                                                                                                                                               | Wetland<br>hydrology score.<br>Detailed<br>assessment of<br>wetland hydrology<br>using a PES tool. |
|                          |                | Shallow flooding<br>by damming                                                                          | Current damming<br>within the<br>wetland complex<br>should remain<br>absent.                                                                                                                              | The aerial extent<br>of damming<br>within the<br>delineated<br>wetland area<br>shall not exceed<br>0% (refer to<br><b>Table 2.4</b> ).                                                        | Impact score<br>within WET-<br>Health.                                                             |
| T35G-<br>06099,<br>T35G- | Habitat        | General wetland<br>vegetation                                                                           | The wetland<br>vegetation must<br>be maintained to<br>ensure that the<br>ecosystem<br>structure and<br>function are<br>maintained.                                                                        | Present<br>condition is a B<br>(impact score of<br>1.8). The<br>numerical<br>criteria should<br>equate to the<br>same or<br>improved value.                                                   | Impact score:<br>Wetland<br>vegetation score<br>and PES as<br>assessed with<br>WET-Health.         |
| 06133,<br>T35G-06118     |                | Loss /<br>defragmentation<br>due to direct<br>agricultural<br>activities                                | Direct<br>agricultural<br>activities and<br>croplands should<br>not be permitted<br>to increase in<br>extent within the<br>wetland<br>complex.                                                            | The aerial extent<br>of agricultural<br>activities and<br>croplands within<br>the delineated<br>wetland area<br>shall not exceed<br>3.5% (refer to<br><b>Table 2.4</b> ).                     | Impact score<br>(aerial extent) as<br>assessed with<br>WET-Health.                                 |
|                          |                | Loss /<br>defragmentation<br>due to<br>commercial<br>plantations or<br>forestry                         | Commercial<br>plantations or<br>forestry should<br>not be permitted<br>to encroach or<br>increase in<br>extent within the<br>wetland<br>complex.                                                          | The aerial extent<br>of commercial<br>plantations or<br>forestry within<br>the delineated<br>wetland area<br>shall not exceed<br>10% (refer to<br><b>Table 2.4</b> ).                         | Impact score<br>(aerial extent) as<br>assessed with<br>WET-Health.                                 |
|                          |                | Loss /<br>defragmentation<br>due to<br>infrastructure,<br>including canals,<br>furrows and<br>trenching | Additional<br>development of<br>infrastructure<br>should not be<br>permitted within<br>the wetland<br>complex.                                                                                            | The aerial extent<br>of infrastructure,<br>including canals,<br>furrows and<br>trenching, within<br>the delineated<br>wetland area<br>shall not exceed<br>2% (refer to<br><b>Table 2.4</b> ). | Impact score<br>(aerial extent) as<br>assessed with<br>WET-Health.                                 |

| SQs | Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sub-                                                                    | RC                                                                                                                                                            | 20                                                             | Indicator                                                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|
| 242 | Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | component                                                               | Narrative                                                                                                                                                     | Numerical                                                      | maicator                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                       | The overall<br>wetland PES as<br>indicated by the<br>vegetation<br>component of<br>WET-Health,<br>must be<br>maintained, or<br>the TEC should<br>be achieved. |                                                                | Wetland<br>vegetation score<br>and PES as<br>assessed with<br>WET-Health. |
|     | Biota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Endangered<br>crane species                                             | Water quantity,<br>vegetation<br>condition and<br>land use<br>practices must<br>be maintained so<br>as to not cause<br>any population<br>decline.             | Data exist but<br>were not<br>available for this<br>assessment | Counts of the<br>number of<br>breeding pairs of<br>crane species.         |
|     | Invasive alien<br>vegetation within<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation<br>vegetation | vegetation within<br>the delineated<br>wetland area<br>shall not exceed | Impact score<br>(aerial extent) as<br>assessed with                                                                                                           |                                                                |                                                                           |
|     | Water quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Detailed data of water quality indicators for this wetland were not     |                                                                                                                                                               |                                                                |                                                                           |

# Table 3.5RQOs for High priority Channelled and unchannelled valley bottoms, flats and<br/>seeps

| SQs                                               | Component | Sub component                              | A                                                                                                 | RQO                                                                                                                                                      | Indiactor                                                         |
|---------------------------------------------------|-----------|--------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 345                                               | Component | omponent Sub-component Narrative Numerical |                                                                                                   | Indicator                                                                                                                                                |                                                                   |
| All SQs<br>listed in<br><b>Table 3.6</b> .        |           | / fragmentation /<br>connectivity          | Wetland<br>connectivity and<br>continuity within<br>the SQ shall be<br>maintained or<br>improved. | Continuity<br>modification ratings<br>of 0 to 3 are to be<br>maintained within<br>the SQ. Ratings of 4<br>or 5 should to be<br>remedied and<br>improved. | A rating of habitat<br>continuity<br>modification from<br>0 to 5. |
| All SQs<br>listed in<br><b>Table 3.6</b> .        |           | Wetland habitat                            | Wetland habitats<br>within the SQ<br>shall be<br>maintained or<br>improved.                       | maintained within the SQ. Ratings of 4                                                                                                                   | A rating of<br>wetland habitat<br>modification from<br>0 to 5.    |
| All SQs<br>listed in<br><b>Table 3.6</b><br>where | ыога      | Endangered crane<br>species                | Water quantity,<br>vegetation<br>condition and<br>land use                                        | Data exist but were<br>not available for this<br>assessment.                                                                                             | Counts of the<br>number of<br>breeding pairs of<br>crane species, |

| SQs                              | Component | Sub component | R                                                                                   | Indicator |                                |
|----------------------------------|-----------|---------------|-------------------------------------------------------------------------------------|-----------|--------------------------------|
| 345                              | Component | Sub-component | Narrative                                                                           | Numerical | Indicator                      |
| cranes<br>have been<br>recorded. |           |               | practices must be<br>maintained so as<br>to not cause any<br>population<br>decline. |           | and distribution<br>sightings. |

# Table 3.6Verification of high priority wetland modification (WET MOD) and continuity<br/>(WET CONT) at the SQ scale

| SQ         | Main river<br>name | Wetland type                       | Cranes* | WET<br>MOD** | WET<br>CONT*** |
|------------|--------------------|------------------------------------|---------|--------------|----------------|
| T31B-04745 | Krom               | Channelled valley-bottom wetland   | 0       | 1            | 1              |
| T31B-04873 |                    | Channelled valley-bottom wetland   | 1       | 1            | 1              |
| T31C-04879 | Nyongo             | Flat                               | 0       | 2            | 2              |
| T31D-04936 | Riet               | Seep                               | 1       | 2            | 1              |
| T31D-05076 | Mzimvubu           | Floodplain wetland                 | 1       | 2            | 2              |
| T31E-05013 | Tswereka           | Unchannelled valley-bottom wetland | 0       | 3            | 3              |
| T31E-05055 |                    | Flat                               | 1       | 2            | 2              |
| T31F-05108 |                    | Flat                               | 1       | 1            | 1              |
| T31F-05111 | Mzimvubu           | Valleyhead seep                    | 1       | 1            | 1              |
| T31F-05112 | Mzimvubu           | Floodplain wetland                 | 1       | 2            | 2              |
| T32A-04907 | Mzintlanga         | Flat                               | 1       | 2            | 2              |
| T32A-04965 | Mzintlava          | Seep                               | 1       | 2            | 2              |
| T32B-05116 |                    | Channelled valley-bottom wetland   | 1       | 2            | 2              |
| T32C-05243 | aManzamnyama       | Seep                               | 1       | 2            | 2              |
| T32C-05273 | Mzintlava          | Seep                               | 0       | 3            | 3              |
| T32C-05313 | Mzintlava          | Valleyhead seep                    | 1       | 1            | 1              |
| T32D-05172 | Droewig            | Channelled valley-bottom wetland   | 1       | 2            | 2              |
| T32D-05352 | Mzintlava          | Channelled valley-bottom wetland   | 1       | 3            | 3              |
| T32D-05373 | Mzintlava          | Channelled valley-bottom wetland   | 0       | 4            | 3              |
| T32F-05464 | Mzintlava          | Channelled valley-bottom wetland   | 1       | 3            | 3              |
| T32H-05842 | Mzintlava          | Channelled valley-bottom wetland   | 0       | 2            | 2              |
| T33A-04928 |                    | Flat                               | 0       | 1            | 2              |
| T33A-04990 | Kinira             | Floodplain wetland                 | 0       | 2            | 2              |
| T33A-04991 |                    | Floodplain wetland                 | 0       | 2            | 2              |
| T33G-05659 | Mzimvubu           | Channelled valley-bottom wetland   | 0       | 1            | 1              |
| T34H-05772 | Thina              | Channelled valley-bottom wetland   | 0       | 1            | 1              |
| T34H-05826 | Ngcothi            | Channelled valley-bottom wetland   | 0       | 1            | 2              |
| T34K-05835 | Thina              | Channelled valley-bottom wetland   | 0       | 1            | 2              |
| T35C-05874 | Mooi               | Seep                               | 1       | 2            | 3              |
| T35D-05844 | Mooi               | Channelled valley-bottom wetland   | 1       | 1            | 1              |
| T35E-05908 | iTsitsa            | Channelled valley-bottom wetland   | 1       | 2            | 2              |
| T35E-05977 | iTsitsa            | Channelled valley-bottom wetland   | 0       | 2            | 2              |
| T35F-05973 | Kuntombizininzi    | Channelled valley-bottom wetland   | 1       | 1            | 1              |
| T35F-05999 | Inxu               | Channelled valley-bottom wetland   | 1       | 1            | 2              |
| T35F-06020 | Inxu               | Channelled valley-bottom wetland   | 1       | 3            | 3              |
| T35G-06002 | Inxu               | Flat                               | 1       | 2            | 2              |
| T35G-06021 | Inxu               | Flat                               | 1       | 2            | 2              |
| T35G-06069 | Gatberg            | Flat                               | 1       | 1            | 2              |
| T35G-06074 | Gatberg            | Flat                               | 1       | 1            | 2              |
| T35G-06099 | Gatberg            | Channelled valley-bottom wetland   | 1       | 1            | 2              |
| T35G-06108 | Inxu               | Channelled valley-bottom wetland   | 1       | 1            | 1              |
| T35G-06118 | Gatberg            | Floodplain wetland                 | 1       | 1            | 2              |

| SQ         | Main river<br>name | Wetland type                       | Cranes* | WET<br>MOD** | WET<br>CONT*** |
|------------|--------------------|------------------------------------|---------|--------------|----------------|
| T35G-06133 |                    | Floodplain wetland                 | 1       | 2            | 2              |
| T35G-06135 | Gqaqala            | Flat                               | 1       | 2            | 2              |
| T35G-06148 |                    | UnChannelled valley-bottom wetland | 0       | 0            | 0              |
| T35H-06240 | KuNgindi           | Seep                               | 1       | 2            | 2              |
| T35K-06037 | iTsitsa            | Valleyhead seep                    | 0       | 2            | 2              |
| T35K-06167 | Xokonxa            | Channelled valley-bottom wetland   | 1       | 2            | 2              |
| T35L-05976 | iTsitsa            | Seep                               | 1       | 2            | 2              |
| T35L-06190 | iTsitsa            | Channelled valley-bottom wetland   | 1       | 1            | 1              |
| T35M-06187 | iTsitsa            | Channelled valley-bottom wetland   | 0       | 1            | 1              |
| T36A-06250 | Mzimvubu           | UnChannelled valley-bottom wetland | 0       | 2            | 2              |

Where: \* 0 = cranes not recorded breeding in the area; 1 = crane breeding has been recorded in the area (data from NFEPA metadata, Nel et al., 2011)

\*\* see below, based on DWS, 2014a

\*\*\* see below, based on DWS, 2014a

#### \*\*POTENTIAL WETLAND MODIFICATION (all within the SQ)

Modifications that indicate the potential that wetlands within the SQ may have been changed from the reference in terms of structure and composition that may influence functioning and processes occurring within. Also refers to wetlands as habitat for biota. Indicators are derived likelihoods that wetlands may have changed in occurrence and structure due to flow modification and physical changes due to agriculture, mining, urbanization, inundation, forestry etc. Based on land cover / land use information. The presence and impact of alien vegetation is also included. Impact ratings are essentially an 'average' or summary of the situation along the length of the SQ, e.g. sections may be better or worse and are as follows:

- 0 = None. Reference. No discernible impact, or the modification is located in such a way that it has no impact on habitat quality, diversity, size and variability.
- 1 = Small. The modification is limited to very few localities and the impact on habitat quality, diversity, size and variability are also very small.
- 2 = Moderate. The modifications are present at a small number of localities and the impact on habitat quality, diversity, size and variability are also limited.
- 3 = Large. The modification is generally present with a clearly detrimental impact on habitat quality, diversity, size and variability. Large areas are, however, not influenced.
- 4 = Serious. The modification is frequently present and the habitat quality, diversity, size and variability in almost the whole of the defined area are affected. Only small areas are not influenced.
- 5 = Critical. The modification is present overall with a high intensity. The habitat quality, diversity, size and variability in almost the whole of the defined section are influenced detrimentally.

#### \*\*\*POTENTIAL WETLAND HABITAT CONTINUITY MODIFICATION (all within the SQ)

Modifications that indicate the potential that wetland connectivity may have been changed from the reference. Indicators include physical fragmentation, e.g. inundation by weirs, dams; physical removal by farming, mining, etc., presence of roads, urban areas. Impact ratings should indicate the likelihood that modifications may have an impact of a particular severity on wetland habitat lateral and longitudinal continuity. Ratings are essentially an 'average' or summary of the situation along the length of the SQ, e.g. sections may be better or worse as follows:

- 0 = None. Reference. No discernible impact, or the modification is located in such a way that it has no impact on habitat quality, diversity, size and variability.
- 1 = Small. The modification is limited to very few localities and the impact on habitat quality, diversity, size and variability are also very small.
- 2 = Moderate. The modifications are present at a small number of localities and the impact on habitat quality, diversity, size and variability are also limited.
- 3 = Large. The modification is generally present with a clearly detrimental impact on habitat quality, diversity, size and variability. Large areas are, however, not influenced.
- 4 = Serious. The modification is frequently present and the habitat quality, diversity, size and variability in almost the whole of the defined area are affected. Only small areas are not influenced.
- 5 = Critical. The modification is present overall with a high intensity. The habitat quality, diversity, size and variability in almost the whole of the defined section are influenced detrimentally.

# 4 APPROACH: GROUNDWATER RESOURCE QUALITY OBJECTIVES

#### 4.1 INTRODUCTION

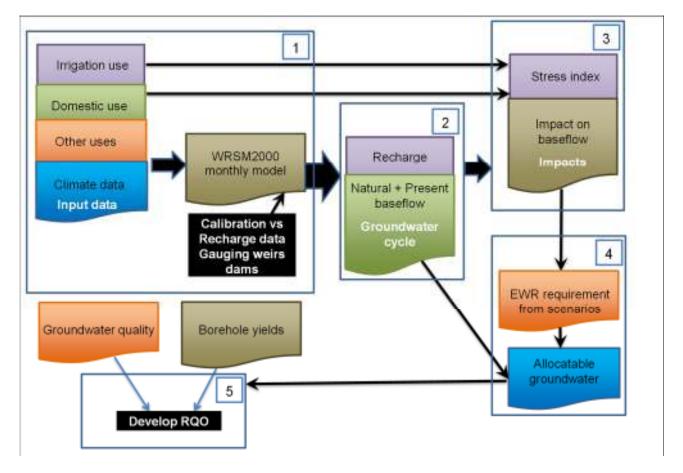
Groundwater RQOs are developed to maintain the required groundwater contribution (groundwater baseflow) to the Ecological Reserve, which is assumed to equal the required maintenance low flow of rivers. The relevance off the groundwater RQOs to protect groundwater is two-fold; 1) to maintain and support the ecological requirements of the receiving surface water bodies; 2) to protect groundwater resources for the direct and indirect users of the groundwater.

The reduction of groundwater baseflow can occur due to abstraction by the interception of groundwater water flow which would normally discharge into rivers, or by abstraction near rivers, which creates drawdown and reverses groundwater gradients so that flow in the river in induced into the aquifer. Therefore, possible RQOs may stipulate the volume of abstraction that would cause an undesirable reduction in baseflow, or specific distances from a river, or specified distances from the surface water body where abstraction can take place.

Baseflow can also be impacted by afforestation and Alien Invasive Plants (AIPs), which can increase evaporation from groundwater if they occur in areas of shallow water table or reduce interflow from high lying areas. Selected indicators to monitor groundwater can be based on existing monitoring data, on simulated data if available, or extrapolation from other areas of similar hydrogeological conditions.

#### 4.2 AVAILABLE DATA

The following literature sources and databases were accessed for groundwater information (**Table 4.1**).


| Type of data                | Data                               | Source                                        |
|-----------------------------|------------------------------------|-----------------------------------------------|
| Catchment delineation       | Quaternary catchment<br>boundaries | WR2012                                        |
| Groundwater discharge zones | Wetland location                   | National NFEPA Atlas 2011                     |
| Population                  | Population and water source        | Statistics SA (referred to as Stats SA, 2012) |
| Climatic data               | Rainfall                           | WR2012                                        |
| Geology                     | Lithology and structures           | Council for Geoscience (CGS) geological maps  |
| Soils                       | Soil maps                          | WR2012                                        |
| Hydrology                   | Flow data<br>Baseflow              | WR2012<br>GRA II (DWAF, 2006)                 |

| Table 4.1 | Literature sources and databases accessed during this study   |
|-----------|---------------------------------------------------------------|
|           | Enterature obtailed and databatood abootood daring tine ofday |

| Type of data                     | Data                     | Source                                 |
|----------------------------------|--------------------------|----------------------------------------|
|                                  |                          | GRA II (DWAF, 2006)                    |
|                                  | Harvest potential        | GRA II (DWAF, 2006)                    |
|                                  | Exploitation potential   | GRA II (DWAF, 2006)                    |
| Coobydrology                     | Recharge                 | ZQM (National Groundwater Quality      |
| Geohydrology                     | Hydrochemistry           | Monitoring Network) database, National |
|                                  | Water levels             | Groundwater Archive (NGA)              |
|                                  | Borehole yields          | NGA                                    |
|                                  |                          | NGA                                    |
|                                  | Licenced groundwater use | WARMS (Water Allocation Registration   |
| Groundwater use                  | Municipal water use      | Management System)                     |
| Groundwater use                  | Schedule 1 water use     | Stats SA                               |
|                                  | Livestock water use      | GRA II (DWAF, 2006)                    |
|                                  |                          | Desktop and River EWR data from the    |
| Ecological Water<br>Requirements | EWR data                 | Mzimvubu Classification and RQO study  |
| Requirements                     |                          | (DWS, 2017c; d)                        |

# 4.3 METHODOLOGY

The approach used in developing the groundwater RQOs is shown in Figure 4.1.



# Figure 4.1 Approach to developing groundwater RQOs

The process followed to develop the RQOs from available data was a five-stage process:

1. Data on surface and groundwater use and climatic data, together with hydrological parameters were entered into the WRSM2000 model to quantify surface and groundwater

resources and interactions, such as recharge and baseflow and evapotranspiration from shallow groundwater. The data utilised was from WR2012 (Water Resources South Africa 2012), and groundwater use was from WARMS. The model was run from 1920 - 2012 and calibrated against DWA flow gauging data, dam volumes, and recharge data such as in the Groundwater Resource Assessment Phase II (GRAII) (DWAF, 2006). For groundwater, calibration included calibrating recharge, aquifer recharge and interflow to fit observed low flows, and baseflow depletion due to abstraction.

- 2. Since the calibrated flows include non-stationary hydrology due to temporal variations in abstraction and afforestation, they cannot be used to determine mean annual values. The surface and groundwater abstraction and afforestation were removed and WRSM2000 was run under virgin conditions. Data was extracted from the model to determine the water balance in terms of recharge, aquifer recharge, interflow, groundwater baseflow and evapotranspiration, both under virgin conditions and with groundwater abstraction at present day levels.
- 3. Present day groundwater use was divided by aquifer recharge to determine the stress index of the units. Impacts on baseflow were determined from baseflow reduction under present day abstraction relative to virgin baseflow.
- 4. The allocable groundwater was determined from the difference between present day abstraction and aquifer recharge.
- 5. Data from the above steps were utilised to develop qualitative and quantitative RQOs and estimate reductions in baseflow from further groundwater abstraction.

The following groundwater data were then synthesised for each quaternary catchment in each Groundwater Resource Unit (GRU) to determine the RQOs:

- Borehole yields
- Existing groundwater use and stress index (total use/aquifer recharge)
- The Harvest Potential of each catchment
- Recharge and aquifer recharge (which excludes the component of recharge lost as interflow and not available to groundwater users)
- Natural or virgin groundwater baseflow, interflow and total baseflow from WRSM2000
- The groundwater baseflow that would occur under present day groundwater abstraction and afforestation and AIPs from WRSM2000
- The mean annual baseflow under present day afforestation, AIPs and groundwater abstraction from WRSM2000

A significant shortcoming was that the available hydrology has never been calibrated for surfacesubsurface interactions and no budget was available for this activity, hence the distributions between interflow and groundwater baseflow, and recharge and aquifer recharge, are of low confidence. The total volume of recharge was derived during GRAII.

More information regarding the groundwater task can be found in the relevant report for the study, i.e. the *Groundwater Report, Report No. WE/WMA7/00/CON/CLA/0817*.

# 4.4 CRITERIA USED FOR RESOURCE QUALITY OBJECTIVES

**Table 4.2** is a summary table of the GRUs and the criteria that were concluded to be necessary for RQOs in each catchment.

| GRU | Quaternaries                                    | Catchment                                                 | Baseflow | Quality | Groundwater<br>level | Harvest<br>Potential |
|-----|-------------------------------------------------|-----------------------------------------------------------|----------|---------|----------------------|----------------------|
| 1   | T31A, T31C,<br>T31E                             | Upper<br>Mzimvubu                                         |          | x       |                      | х                    |
| 2   | T31A,<br>T31BT31C,<br>T31D, T31E,<br>T31G, T31H | Upper<br>Mzimvubu                                         |          | x       |                      | х                    |
|     | T31F                                            |                                                           | х        |         | х                    | х                    |
| 3   | T32A, T32B,<br>T32C, T32D,<br>T2E               | Mzintlava                                                 |          | х       |                      | x                    |
| 4   | T33A                                            | Upper Kinira                                              | х        | х       |                      | х                    |
|     | T33B, T33C,<br>T33D, T33E                       |                                                           |          | x       | х                    | х                    |
| 5   | T33F, T33G                                      | Lower Kinira                                              |          |         |                      | х                    |
| 6   | T32F, T32G,<br>T32H, T33K                       | Lower<br>Mzintlava,<br>Middle<br>Mzimvubu,<br>Mzintlavana |          | x       |                      | х                    |
| 7   | T34A, T34B,<br>T34C, T34D,<br>T34E, T34F        | Upper Thina                                               |          |         |                      | x                    |
| 8   | T34G, T34H                                      | Middlle Thina                                             |          |         |                      | х                    |
| 9   | T34J, T34K                                      | Lower Thina                                               |          | х       |                      | х                    |
| 10  | T35A, T35B,<br>T35D, T35F,<br>T35G,             | Upper Tsitsa<br>and Inxu                                  |          | х       |                      | x                    |
|     | T35C, T35H                                      |                                                           | х        | х       |                      | х                    |
| 11  | T35E, T35H,<br>T35J, T35K                       | Middle Tsitsa<br>and lower Inxu                           | x        | x       |                      | х                    |
| 12  | T35L, T35M                                      | Lower Tsitsa                                              |          | х       |                      | х                    |
| 13  | T36A, T36B                                      | Lower<br>Mzimvubu                                         |          | x       |                      | х                    |
| 14  | T31J, T33J                                      | Middle and                                                |          | х       |                      | х                    |
|     | Т33Н                                            | lower<br>Mzimvubu                                         |          | x       |                      | x                    |

#### Table 4.2 Summary of criteria used to set the groundwater RQOs

#### 4.5 CLASSIFICATION OF CRITERIA IN RESOURCE QUALITY OBJECTIVES

#### 4.5.1 Classification of groundwater status

To calculate the available groundwater resources, the standard DWS methodology (Parsons and Wentzel, 2007) was adopted to determine the stress index (groundwater use recharge), and a present status allocated according to the stress index. A fundamental flaw with this approach is that the use of recharge to calculate stress on groundwater resources ignores the fact that large part of recharge never enters the regional aquifers and is discharged as interflow from high lying regions, following rain events, or from saturated areas. Consequently, the stress index was calculated as the ratio of groundwater use to aquifer recharge, ignoring the interflow component not available to boreholes.

Once a stress index was calculated, each quaternary was assigned a groundwater (GW) present status based on the volume of groundwater abstracted compared to the volume recharged (stress index). The categories in **Table 4.3** were used to determine the present status of groundwater.

| GW present status | Description                                                                        | Stress index | Water Resource<br>Category |
|-------------------|------------------------------------------------------------------------------------|--------------|----------------------------|
| A                 | Unmodified, pristine conditions                                                    | ≤ 0.05       | Natural                    |
| В                 | Low volume GW usage, largely natural conditions, no negative impacts apparent      | 0.05 – 0.2   | Good                       |
| С                 | Moderate volumes of GW usage, little<br>or no negative impacts apparent            | 0.2 - 0.4    | Fair                       |
| D                 | High volumes of GW usage, but with little apparent negative impact                 | 0.4 – 0.65   | Poor                       |
| E                 | Stressed system due to over-<br>abstraction of GW or inappropriate<br>land-use     | 0.65 – 0.95  |                            |
| F                 | Critical over-abstraction of GW or<br>highly sensitive hydrological<br>environment | >0.95        |                            |

| Table 4.3 | Terminology and classes used during the classification process |
|-----------|----------------------------------------------------------------|
|-----------|----------------------------------------------------------------|

# 4.5.2 Abstraction

According to the degree of abstraction relative to the resource, as determined by the stress index, groundwater use can be described according to the categories in Table 4.3. However, abstraction impacts on baseflow vary not only according to the volume abstracted, but the proximity of abstraction to the river. Groundwater abstraction can deplete both groundwater storage and groundwater baseflow in a non-linear fashion depending on the transmissivity and storativity of the aguifer, the distance from the stream channel and the time since pumping started and the volume of recharge in that month. Using the methodology utilised in the WRSM2000 model (Pitman model; Pitman et al., 2006), distance and time curves for the impact of groundwater abstraction on baseflow show the following: For an aquifer with a transmissivity of 10 m<sup>2</sup>/day and a storativity of 0.01, at a distance of 200 m from a river, over 90% of abstraction would be from groundwater stored for 100 days without recharge. The remainder of the abstraction would originate as baseflow depletion. Hence at 200 m the impacts of abstraction on baseflow would be low. At 100 m distance, 50% of abstraction would be from baseflow depletion. This distance, i.e. 100 m from a stream, was therefore selected as the general distance from which to restrict groundwater abstraction and streamflow reduction (SFR) activities in the absence of local data and in areas where baseflow reduction may be an issue.

# 4.5.3 Baseflow

In GRUs where baseflow reduction is greater than 30%, whether due to afforestation, AIPs or groundwater abstraction, it is considered necessary to monitor baseflow due to potential impacts on the ecology. Monitoring baseflow can take the form on monitoring dry season flows at gauging stations and comparing flows to natural flows utilising flow duration curves, or via simulation of impacts on low flows by model simulation of changes in land or water use. Where an EWR low flow

has been set, this low flow can be used as a numerical low flow at the nearest downstream gauging station.

# 4.5.4 Water level

Setting water levels as an RQO is problematic since water levels vary by borehole location in terms of topography, pumping rates and aquifer hydraulic parameters. Hence, water level below surface is a site-specific variable which cannot be stipulated for an entire catchment.

In addition, monitoring water level provides only localised information, and monitoring water levels, for example, "within 50 m of a river to ensure water levels do not drop more than 0.5 m", requires having a dense network of *regularly monitored* boreholes within 50 m of a river; so as to prevent only point data is being gathered and used. It is therefore not feasible for monitoring activities at catchment scale. Monitoring baseflow in catchments where groundwater is linked to rivers provides an integrated response of processes within the entire catchment, and where gauging weirs exist this data is already being collected. Hence monitoring flow in dry months and undertaking hydrograph separations in high flow periods provides a time series of information on the maintenance of ecological flows. In catchments where groundwater levels are below stream levels, only groundwater levels can provide information on storage levels in an aquifer.

Monitoring water levels is not necessary where baseflow reduction occurs due to afforestation and AIPs, which reduce interflow from high lying areas. Where groundwater is underutilised relative to recharge, dropping water levels are not expected, hence monitoring is not necessary, except as a record of background water level and its natural fluctuations, since the risk of a regional drop in water levels is unlikely. Monitoring of water levels should be prioritised in areas where the stress index is greater than 0.2, especially where the abstraction has had a significant impact on baseflow.

Where monitoring is necessary, the specific water level is borehole dependent and the critical issue is whether dry season water levels show a trend of decline over several years rather than an absolute level. This may occur in one borehole due to localised pumping but may not be applicable to an entire catchment.

# 4.5.5 Water quality

Groundwater water quality data is limited for many quaternary catchments, hence it is not possible to derive meaningful statistics such as ranges, medians etc.. The number of samples falling into each DWS water quality class is listed as a percentage for a catchment. Water quality classes are defined by DWS as shown in **Table 4.4** and are linked to potability of water. Where boreholes of a quality worse than Class II are present, monitoring is recommended.

Groundwater quality class was allocated according to the following criteria:

- Class I: 95% of samples of water quality Class 0 and 1
- Class II 75% of samples of water quality Class 0-2

Class III: <75% of samples Class 0-2

#### Table 4.4 DWS Water Quality classes

| Water<br>quality class | Description                                                           | Drinking health effects                                                                                                                                                               |  |  |  |  |
|------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Class 0                | Ideal water quality                                                   | No effects, suitable for many generations.                                                                                                                                            |  |  |  |  |
| Class 1                | Good water quality                                                    | Suitable for lifetime use. Rare instances of sub-clinical<br>effects.                                                                                                                 |  |  |  |  |
| Class 2                | Marginal water quality,<br>water suitable for short-<br>term use only | May be used without health effects by majority of users,<br>but may cause effects in some sensitive groups. Some<br>effects possible after lifetime use.                              |  |  |  |  |
| Class 3                | Poor water quality                                                    | Poses a risk of chronic health effects, especially in<br>bables, children and the elderly. May be used for short-<br>term emergency supply with no alternative supplies<br>available. |  |  |  |  |
| Class 4                | Unacceptable water quality                                            | Severe acute health effects, even with short-term use.                                                                                                                                |  |  |  |  |

#### 4.5.6 RQOs for catchments with no surface groundwater interactions

Due to the relatively high rainfall of the study area and the rugged topography, every catchment generates both interflow and groundwater baseflow, hence the potential to impact on baseflow via afforestation, AIPs, SFR activities and groundwater abstraction exists in every quaternary catchment.

# 5 GROUNDWATER: RESOURCE QUALITY OBJECTIVES

RQOs are presented per Groundwater Resource Unit.

#### 5.1 GRU 1 AND GRU 2: UPPER MZIMVUBU

#### 5.1.1 Hydrogeology

GRUs 1 and 2 are distinguished by the rugged escarpment zone of the South-eastern Highlands. GRU 1 is the rugged escarpment zone of the headwater of the catchments, whose function is largely as a source of interflow. GRU 2 is the larger portion of the catchments below the escarpment. Data are not available on the scale required to distinguish their recharge and groundwater use characteristics, hence they are combined. They cover catchments T31A (Mzimvubu), T31C (Mingeni and Nyongo), T31E (Tswereka), T31B (Krom), T31D (Riet and Mzimkulu), T31H (Myenyane), T31F and T31G (Mzimkulu). Quaternary catchment T31F contains the town of Cedarville.

The GRUs consists of rural areas, with dryland irrigation and some irrigated lands in the lower reaches of T31E, T31D, F and G. Some afforestation exists in the upper reaches of T31A and B. T31A, B and F are heavily dependent on groundwater (> 65%).

Rocks of the Clarens, Elliot and Molteno Formations underlie the Escarpment watershed of GRU 1, and rocks of the Tarkastad Subgroup underlies GRU 2, along with extensive quaternary cover in the flat lands between Matatiele, Cedarville and Swartberg (**Figure 5.1**).

The yield characteristics are shown in **Table 5.1**. Yields are relatively high, making localised overexploitation possible.

| Quaternary                | T31A | T31B | T31C | T31D | T31E | T31F | T31G   | T31H |
|---------------------------|------|------|------|------|------|------|--------|------|
| No of boreholes           | 1    | 12   | 16   | 16   | 35   | 49   | 6      | 27   |
| Median yield (l/s)        | 1.04 | 0.96 | 1.48 | 0.83 | 2.4  | 2    | 2.7351 | 0.5  |
| % of boreholes > 2<br>I/s | 0    | 33.3 | 43.8 | 31.3 | 51.4 | 49   | 66.667 | 25.9 |

#### Table 5.1Borehole yields in GRU 1 and GRU 2

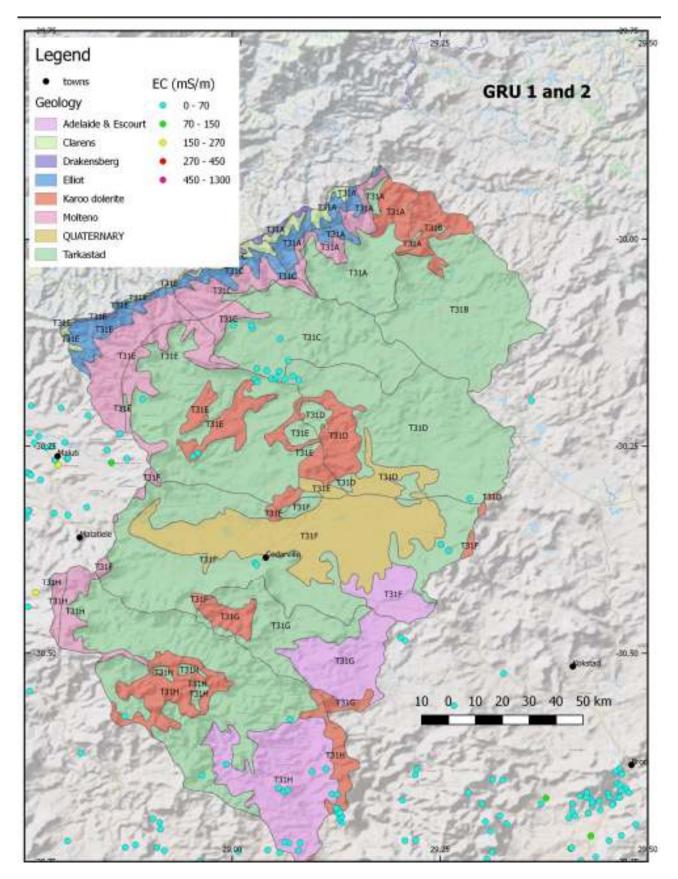



Figure 5.1 Upper Mzimvubu GRU 1 (Molteno, Elliot, Clarens and Drakensberg Formations) and GRU 2 (Tarkastad and Adelaide Subgroups)

#### 5.1.2 Groundwater use and resources

Groundwater use in these GRUs is minimal except in T31F due to use near Cedarville. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <30%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.2**).

| Quaternary                           | T31A  | T31B  | T31C  | T31D  | T31E   | T31F  | T31G  | T31H  |
|--------------------------------------|-------|-------|-------|-------|--------|-------|-------|-------|
| Recharge (Mm <sup>3</sup> )          | 56.02 | 44.82 | 45.32 | 32.83 | 36.5   | 29.66 | 43.55 | 44.45 |
| Aquifer Recharge (Mm <sup>3</sup> )  | 7.858 | 9.678 | 9.731 | 9.282 | 10.339 | 9.49  | 9.939 | 9.622 |
| Harvest Potential (Mm <sup>3</sup> ) | 3.62  | 5.03  | 5.08  | 6.22  | 8.47   | 10.41 | 3.26  | 9.9   |
| Total use (Mm <sup>3</sup> )         | 0.02  | 0.027 | 0.154 | 0.213 | 0.135  | 3.243 | 0.099 | 0.361 |
| Stress Index                         | 0.002 | 0.002 | 0.006 | 0.022 | 0.008  | 0.341 | 0.009 | 0.022 |
| GW Present Status                    | Α     | А     | А     | А     | А      | С     | А     | А     |

### Table 5.2Groundwater use and resources in GRU 1 and 2

#### 5.1.3 Water quality

Groundwater is generally of DWS Class 0-1, or Ideal to Good water quality. Elevated fluorides and nitrates can exist in T31D and E (**Table 5.3**). An empty block signifies too few data points for an assessment.

#### Table 5.3Borehole water quality in GRU 1 and 2

| Quaternary                                | Class per<br>variable | T31A | T31B | T31C | T31D | T31E | T31F | T31G | T31H |
|-------------------------------------------|-----------------------|------|------|------|------|------|------|------|------|
| Integrated water<br>quality (wq)<br>Class |                       | I    | Ι    | I    | =    | =    | I    | Ι    | I    |
|                                           | 0                     |      |      | 100  | 100  | 100  | 100  | 100  | 100  |
| Total Dissolved                           | 1                     |      |      |      |      |      |      |      |      |
| Solids (TDS)                              | 2                     |      |      |      |      |      |      |      |      |
| quality class %                           | 3                     |      |      |      |      |      |      |      |      |
|                                           | 4                     |      |      |      |      |      |      |      |      |
|                                           | 0                     | 100  | 100  | 100  | 93   | 83   | 97   | 88   | 100  |
|                                           | 1                     | 0    | 0    | 0    | 7    | 0    | 3    | 13   | 0    |
| Nitrate quality<br>class %                | 2                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                                           | 3                     | 0    | 0    | 0    | 0    | 17   | 0    | 0    | 0    |
|                                           | 4                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                                           | 0                     | 100  | 100  | 100  | 87   | 100  | 76   | 100  | 100  |
|                                           | 1                     | 0    | 0    | 0    | 7    | 0    | 21   | 0    | 0    |
| Fluoride quality class %                  | 2                     | 0    | 0    | 0    | 7    | 0    | 3    | 0    | 0    |
|                                           | 3                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                                           | 4                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

#### 5.1.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU. Only 9-22% of baseflow is from the regional aquifer; the remainder originating as interflow (**Table 5.4**). No significant baseflow reduction occurs.

| Quaternary                              |                                               | T31A | T31B  | T31C  | T31D  | T31E  | T31F  | T31G  | T31H  |
|-----------------------------------------|-----------------------------------------------|------|-------|-------|-------|-------|-------|-------|-------|
| Baseflow                                | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 1.08 | 1.86  | 1.77  | 1.91  | 2.83  | 3.31  | 0.59  | 5.31  |
|                                         | Interflow<br>(Mm <sup>3</sup> )               | 7.82 | 8.51  | 8.67  | 8.96  | 13.49 | 14.57 | 6.25  | 18.19 |
| Total Base flow (Mm <sup>3</sup> )      |                                               | 8.9  | 10.37 | 10.44 | 10.87 | 16.32 | 17.88 | 6.84  | 23.5  |
| Use (Mm <sup>3</sup> )                  |                                               | 0.02 | 0.027 | 0.154 | 0.213 | 0.135 | 3.243 | 0.099 | 0.361 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                               | 8.48 | 10.26 | 10.24 | 10.83 | 15.86 | 17.73 | 6.68  | 22.4  |
| Baseflow reduction (%)                  |                                               | 4.72 | 1.06  | 1.92  | 0.37  | 2.82  | 0.84  | 2.34  | 4.68  |

#### Table 5.4 Groundwater contribution to baseflow in GRU 1 and 2

#### 5.1.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal except in T31F where irrigation takes place. The high borehole yields make localised over-abstraction possible, but unlikely to have a regional scale impact. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which can be significantly impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrates and fluorides in some localities can be associated with doleritic intrusions and removal of vegetation.

The abstractable volume of groundwater is based on the Harvest Potential, which is higher than the aquifer recharge in T31F and H. RQOs are listed in **Table 5.5**.

| Quatarnariaa      |                                                                                                                                                                                              | Groundwater narrative RQO                                         |                                                                                                                        |                                                                                                                                                                   |                                                                      |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|
| Quaternaries      | Abstraction                                                                                                                                                                                  | Baseflow                                                          | Water Level                                                                                                            | Water Quality                                                                                                                                                     | numerical RQO                                                        |  |  |  |  |  |
| T31A-E,<br>T31G-H | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA*<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. | Due to the low<br>groundwater<br>use, monitoring<br>not required. | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to<br>baseflow,<br>monitoring not<br>required. | Some<br>boreholes have<br>elevated<br>natural nitrate<br>and fluoride<br>levels, so<br>nitrate and<br>fluoride need to<br>be tested for<br>domestic<br>boreholes. | Due to low<br>groundwater stress,<br>no numerical limits<br>are set. |  |  |  |  |  |
| T31F              | All users to<br>comply with<br>existing                                                                                                                                                      | Due to<br>groundwater<br>contribution to                          | Water level<br>monitoring<br>required near                                                                             | No water<br>quality<br>monitoring                                                                                                                                 | The remaining<br>Allocable<br>groundwater is 5.21                    |  |  |  |  |  |

| Quatarparias |                                                                                                                                                  | Groundwater                                                                                                               | narrative RQO                                                                                                                                      |               | Groundwater                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------|
| Quaternaries | Abstraction                                                                                                                                      | Baseflow                                                                                                                  | Water Level                                                                                                                                        | Water Quality | numerical RQO                                                                    |
|              | allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. | baseflow,<br>abstraction<br>within 100 m of<br>perennial rivers<br>should be<br>restricted to<br>use less than<br>the GA. | Cedarville and<br>areas of high<br>abstraction. No<br>downward<br>trend of static<br>water level<br>should be seen<br>over a period<br>of 5 years. | required.     | Mm <sup>3</sup> /a.<br>Note allocable =<br>65% of aquifer<br>recharge – Reserve. |

\*GA: General Authorization

### 5.2 GRU 3: UPPER MZINTLAVA

#### 5.2.1 Hydrogeology

This GRU occupies the area from the catchment watershed to Mount Ayliff. It contains catchments T32A and B (Mzintlava), T32C (Manzamnyama and Mzintlava), T32D (Droewig and Mzintlava), and T32E (Mvalweni and Mzintlava). T32C includes the town of Kokstad.

The GRUs consist of rural areas, with dryland irrigation and some irrigated lands in T32A–C near Franklin, Swartberg and Kruisfontein, downstream to Kokstad. Some afforestation exists in T32C. T32A is heavily dependent on groundwater (> 65%).

Rocks of the Tarkastad Subgroup underlie the upper reaches of T32A, otherwise the GRU is underlain by mudstones and sandstones of the Adelaide Subgroup. Extensive outcrop of dolerite sheets occur across the GRU (**Figure 5.2**).

The yield characteristics are shown in **Table 5.6**. Yields are relatively high, making localised overexploitation possible.

#### Table 5.6Borehole yields in GRU 3

| Quaternary             | T32A | T32B | T32C | T32D | T32E |
|------------------------|------|------|------|------|------|
| No of boreholes        | 19   | 7    | 16   | 26   | 39   |
| Median yield (l/s)     | 1.56 | 1.53 | 1    | 1.28 | 1.6  |
| % of boreholes > 2 l/s | 31.6 | 28.6 | 31.3 | 34.6 | 38.5 |

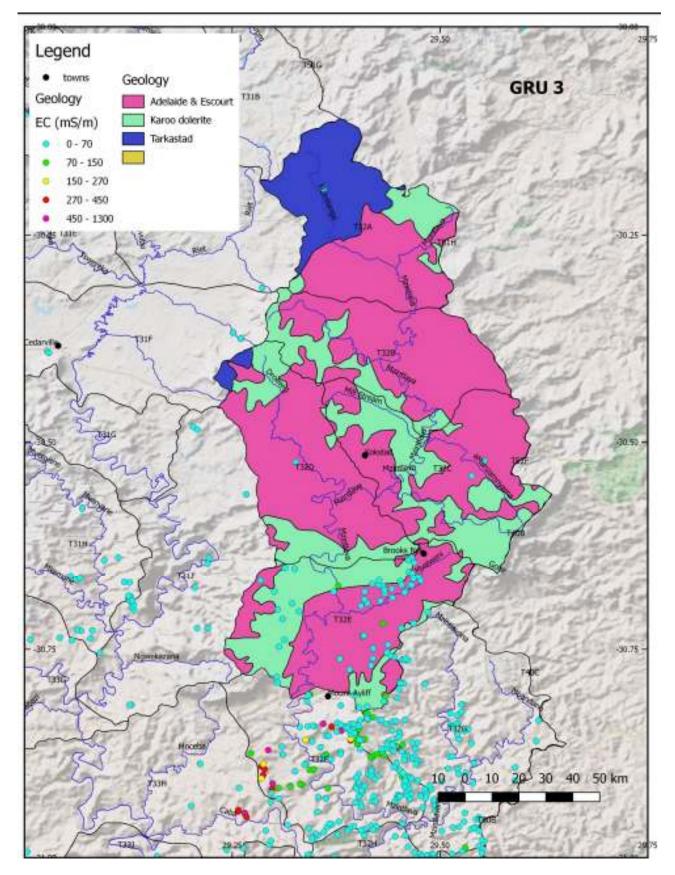



Figure 5.2 Upper Mzintlava GRU 3

#### 5.2.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <30%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.7**).

| Quaternary                           | T32A   | T32B   | T32C   | T32D   | T32E  |
|--------------------------------------|--------|--------|--------|--------|-------|
| Recharge (Mm <sup>3</sup> )          | 38.59  | 42.92  | 40.2   | 39.7   | 49.33 |
| Aquifer Recharge (Mm <sup>3</sup> )  | 10.488 | 10.128 | 10.086 | 12.525 | 9.736 |
| Harvest Potential (Mm <sup>3</sup> ) | 5.26   | 4.18   | 5.07   | 4.77   | 5.21  |
| Total use (Mm <sup>3</sup> )         | 0.8    | 0.048  | 0.123  | 0.115  | 0.732 |
| Stress Index                         | 0.076  | 0.004  | 0.008  | 0.007  | 0.067 |
| GW Present Status                    | В      | А      | А      | А      | В     |

#### Table 5.7Groundwater use and resources in GRU 3

#### 5.2.3 Water quality

Groundwater is generally of DWS Class 0-1, or Ideal to Good water quality. Elevated fluorides and nitrates can exist in T32C-E (**Table 5.8**).

| Quaternary                             | Class per<br>variable | T32A | Т32В | T32C | T32D | T32E |
|----------------------------------------|-----------------------|------|------|------|------|------|
| Integrated water<br>quality (wq) Class |                       | I    | Ι    | Ι    | =    | Ι    |
|                                        | 0                     | 100  | 100  | 100  | 100  | 86   |
| Total Dissolved                        | 1                     | 0    | 0    | 0    | 0    | 9    |
| Solids quality class %                 | 2                     | 0    | 0    | 0    | 0    | 0    |
|                                        | 3                     | 0    | 0    | 0    | 0    | 0    |
|                                        | 4                     | 0    | 0    | 0    | 0    | 5    |
|                                        | 0                     | 100  | 100  | 100  | 100  | 86   |
| Nitrate quality                        | 1                     | 0    | 0    | 0    | 0    | 9    |
| class %                                | 2                     | 0    | 0    | 0    | 0    | 0    |
|                                        | 3                     | 0    | 0    | 0    | 0    | 0    |
|                                        | 4                     | 0    | 0    | 0    | 0    | 5    |
|                                        | 0                     | 86   | 100  | 93   | 75   | 100  |
| Fluoride quality class %               | 1                     | 7    | 0    | 0    | 6    | 0    |
|                                        | 2                     | 7    | 0    | 0    | 0    | 0    |
|                                        | 3                     | 0    | 0    | 7    | 13   | 0    |
|                                        | 4                     | 0    | 0    | 0    | 6    | 0    |

#### Table 5.8Borehole water quality in GRU 3

#### 5.2.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU. Less than 20% of baseflow is from the regional aquifer the remainder originating as interflow (**Table 5.9**).

#### Table 5.9Groundwater contribution to baseflow in GRU 3

| Quaternary                              |                                               | T32A  | T32B  | T32C  | T32D  | T32E  |
|-----------------------------------------|-----------------------------------------------|-------|-------|-------|-------|-------|
| Baseflow                                | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 2.45  | 2.35  | 2.91  | 2.65  | 3.39  |
|                                         | Interflow<br>(Mm <sup>3</sup> )               | 15.99 | 15.14 | 18.48 | 11.38 | 14.65 |
| Total Base flow (                       | Mm³)                                          | 18.44 | 17.49 | 21.39 | 14.03 | 18.04 |
| Use (Mm <sup>3</sup> )                  |                                               | 0.8   | 0.048 | 0.123 | 0.115 | 0.732 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                               | 18.03 | 16.77 | 20.36 | 13.63 | 17.39 |
| Baseflow reducti                        | on (%)                                        | 2.22  | 4.12  | 4.82  | 2.85  | 3.60  |

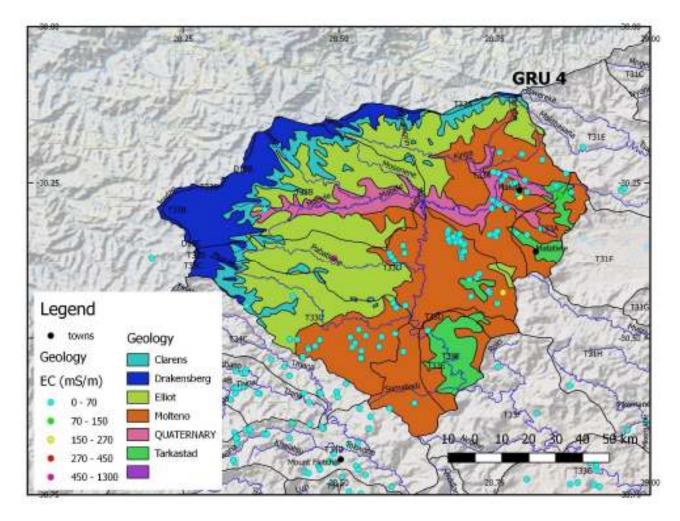
# 5.2.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal. The high borehole yields make localised over-abstraction possible, impact on a regional scale is unlikely. The groundwater component of baseflow is low, hence the potential of groundwater abstraction impacting on baseflow is limited. Baseflow is largely derived by interflow, which can be significantly impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrates and fluorides in some localities can be associated with doleritic intrusions and the removal of vegetation.

The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs are shown in **Table 5.10**.

|              |                                                                                                                                                                                             | Groundwater                                                       | narrative RQO                                                                                                          |                                                                                                                                      | Groundwater                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Quaternaries | Abstraction                                                                                                                                                                                 | Baseflow                                                          | Water Level                                                                                                            | Water Quality                                                                                                                        | numerical<br>RQO                                                        |
| Т32А-Е       | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. | Due to the low<br>groundwater<br>use, monitoring<br>not required. | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to<br>baseflow,<br>monitoring not<br>required. | Some<br>boreholes have<br>elevated<br>natural fluoride<br>levels and<br>fluoride needs<br>to be tested for<br>domestic<br>boreholes. | Due to low<br>groundwater<br>stress, no<br>numerical limits<br>are set. |


#### Table 5.10 Groundwater RQOs for GRU 3

#### 5.3 GRU 4: UPPER KINIRA

#### 5.3.1 Hydrogeology

This area forms GRU 4, the upper Kinira, from the catchment watershed to T33E. It contains catchments T33A (upper Kinira and its tributaries), T33B (Mabele and tributaries), T33C (Monulane), T32D (Pabatlong and Kinira), and T32E (Kinira and Somabadi). The towns of Maluti and Matatiele are located in T33A.

The GRUs consists of rural areas, with dryland irrigation. T33D is heavily dependent on groundwater (> 65%). Rocks of the Drakensberg, Clarens and Elliot Formations underlie the Escarpment watershed in the west, while the underlying Molteno Formation and Tarkastad Subgroup are exposed in the east. Quaternary cover underlies the Mabele in T33A and B (**Figure 5.3**).



# Figure 5.3 Upper Kinira GRU

The yield characteristics are shown in **Table 5.11**. Yields are relatively high, making localised overexploitation possible.

### Table 5.11Borehole yields in GRU 4

| Quaternary             | T33A   | T33B | T33C | T33D | T33E |
|------------------------|--------|------|------|------|------|
| No of boreholes        | 78     | 8    | 26   | 64   | 24   |
| Median yield (l/s)     | 2.7501 | 1.9  | 0.91 | 1.26 | 0.9  |
| % of boreholes > 2 l/s | 55.128 | 50   | 26.9 | 31.3 | 29.2 |

#### 5.3.2 Groundwater use and resources

Groundwater use in the GRU is minimal, except for T33A around Matatiele. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <30%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.12**).

#### Table 5.12 Groundwater use and resources in GRU 4

| Quaternary                           | T33A  | T33B       | T33C  | T33D  | T33E       |
|--------------------------------------|-------|------------|-------|-------|------------|
| Recharge (Mm <sup>3</sup> )          | 36    | 41.86      | 35    | 33.64 | 35.59      |
| Aquifer Recharge (Mm <sup>3</sup> )  | 9.012 | 10.18<br>9 | 9.211 | 9.237 | 10.60<br>2 |
| Harvest Potential (Mm <sup>3</sup> ) | 11.64 | 9.57       | 5.43  | 6.85  | 3.63       |
| Total use (Mm <sup>3</sup> )         | 3.431 | 0.161      | 0.4   | 1.342 | 0.299      |
| Stress Index                         | 0.371 | 0.005      | 0.024 | 0.119 | 0.021      |
| GW Present Status                    | С     | Α          | Α     | В     | Α          |

#### 5.3.3 Water quality

Groundwater is generally of DWS Class 0-1, or Ideal to Good water quality. Elevated fluorides and nitrates exist (**Table 5.13**).

| Quaternary              | Class per<br>variable | T33<br>A | T33B | T33C | T33D | T33E |
|-------------------------|-----------------------|----------|------|------|------|------|
| Integrated wq<br>Class  |                       | Ι        | I    | I    | П    | Ι    |
|                         | 0                     | 88       | 100  | 100  | 93   | 100  |
|                         | 1                     | 3        | 0    | 0    | 0    | 0    |
| TDS quality<br>class %  | 2                     | 0        | 0    | 0    | 0    | 0    |
|                         | 3                     | 5        | 0    | 0    | 0    | 0    |
|                         | 4                     | 0        | 0    | 0    | 2    | 0    |
|                         | 0                     | 100      | 100  | 67   |      | 100  |
|                         | 1                     | 0        | 0    | 0    |      | 0    |
| Nitrate quality class % | 2                     | 0        | 0    | 0    |      | 0    |
|                         | 3                     | 0        | 0    | 33   |      | 0    |
|                         | 4                     | 0        | 0    | 0    |      | 0    |
|                         | 0                     | 86       | 100  | 100  |      | 67   |
| Fluende                 | 1                     | 0        | 0    | 0    |      | 0    |
| Fluoride                | 2                     | 0        | 0    | 0    |      | 0    |
| quality class %         | 3                     | 14       | 0    | 0    |      | 0    |
|                         | 4                     | 0        | 0    | 0    |      | 33   |

### Table 5.13Borehole water quality in GRU 4

#### 5.3.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU. Less than 15% of baseflow is from the regional aquifer the remainder originating as interflow (**Table 5.14**).

| Quaternary                              |                                               | T33A  | T33B  | T33C  | T33D  | T33E  |
|-----------------------------------------|-----------------------------------------------|-------|-------|-------|-------|-------|
| Baseflow                                | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 1.91  | 0.03  | 0.44  | 0.48  | 1.35  |
|                                         | Interflow<br>(Mm <sup>3</sup> )               | 28.98 | 28.91 | 15.92 | 20.03 | 6.93  |
| Total Base flow                         | (Mm <sup>3</sup> )                            | 30.89 | 28.94 | 16.36 | 20.51 | 8.28  |
| Use (Mm <sup>3</sup> )                  |                                               | 3.431 | 0.161 | 0.4   | 1.342 | 0.299 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                               | 28.65 | 28.81 | 16.34 | 18.78 | 8.28  |
| Baseflow reduc                          | Baseflow reduction (%)                        |       | 0.45  | 0.12  | 3.80  | 0.00  |

Table 5.14Groundwater contribution to baseflow in GRU 4

### 5.3.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal, except for T33A around Matatiele. The high borehole yields make localised over-abstraction possible, but unlikely on a regional scale. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which can be significantly impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrates and fluorides in some localities can be associated with doleritic intrusions and the removal of vegetation.

The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs are shown in **Table 5.15**.

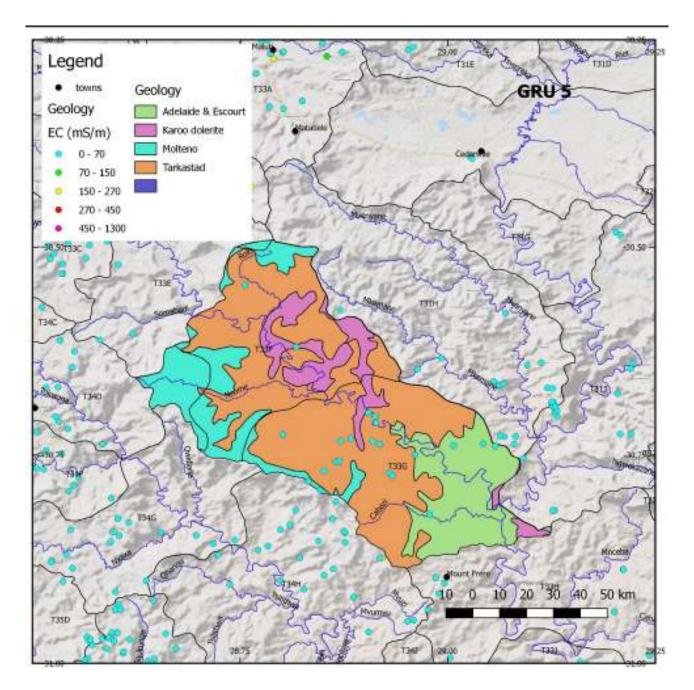
| Quatarparias |                                                                                                                                                                                             | Groundwater r                                                                                                                                                         | narrative RQO                                                                                                                                                                                   |                                                                       | Groundwater                                                                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Quaternaries | Abstraction                                                                                                                                                                                 | Baseflow                                                                                                                                                              | Water Level                                                                                                                                                                                     | Water Quality                                                         | numerical RQO                                                                                                                       |
| T33A         | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. | Due to<br>groundwater<br>contribution to<br>baseflow,<br>abstraction<br>within 100 m of<br>perennial rivers<br>should be<br>restricted to<br>use less than<br>the GA. | Water level<br>monitoring<br>required near<br>Matatiele and<br>areas of high<br>abstraction. No<br>downward<br>trend of static<br>water level<br>should be seen<br>over a period<br>of 5 years. | No water<br>quality<br>monitoring<br>required.                        | The remaining<br>allocable groundwater<br>is 1.366 Mm <sup>3</sup> /a.<br>Note allocable = 65%<br>of aquifer recharge –<br>Reserve. |
| T33B-E       | All users to<br>comply with<br>existing<br>allocation<br>schedules,                                                                                                                         | Due to the low<br>groundwater<br>use, monitoring<br>not required.                                                                                                     | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to                                                                                                                      | Some<br>boreholes<br>have elevated<br>natural nitrate<br>and fluoride | Due to low<br>groundwater stress, no<br>numerical limits are<br>set.                                                                |

Table 5.15 Groundwater RQOs for GRU 4

| Quaternaries | Groundwater narrative RQO                                                                                            |  |                                                                                                                                                  |                                                                                          |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Quaternaries | Abstraction Baseflow Water Level                                                                                     |  | Water Quality                                                                                                                                    | numerical RQO                                                                            |  |  |  |
|              | including GA<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. |  | baseflow,<br>monitoring not<br>required.<br>Water level<br>monitoring<br>required near<br>Matatiele in<br>regional water<br>supply<br>boreholes. | levels, so<br>nitrate and<br>fluoride need<br>to be tested<br>for domestic<br>boreholes. |  |  |  |

#### 5.4 GRU 5: LOWER KINIRA

### 5.4.1 Hydrogeology


This area forms GRU 5, the lower Kinira between GRU 4 and the confluence with the Mzimvubu River. It contains catchments T33F and G of the lower Kinira River.

The GRUs consists of rural areas, with dryland irrigation. Some afforestation exists. The GRU is not very dependent on groundwater. Rocks of the Tarkastad and Adelaide Subgroups underlie most of the GRU (**Figure 5.4**).

The yield characteristics are shown in **Table 5.16**. Yields are relatively high, making localised overexploitation possible.

### Table 5.16Borehole yields in GRU 5

| Quaternary             | T33F | T33G |
|------------------------|------|------|
| No of boreholes        | 26   | 52   |
| Median yield (l/s)     | 1.38 | 2.15 |
| % of boreholes > 2 l/s | 46.2 | 51.9 |



# Figure 5.4 Lower Kinira GRU 5

# 5.4.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <20%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.17**).

Table 5.17 Groundwater use and resources in GRU 5

| Quaternary                           | T33F  | T33G  |
|--------------------------------------|-------|-------|
| Recharge (Mm <sup>3</sup> )          | 46.62 | 50.31 |
| Aquifer Recharge (Mm <sup>3</sup> )  | 9.867 | 9.451 |
| Harvest Potential (Mm <sup>3</sup> ) | 7.5   | 7.99  |
| Total use(Mm <sup>3</sup> )          | 0.294 | 0.35  |
| Stress Index                         | 0.025 | 0.031 |
| GW Present Status                    | А     | А     |

### 5.4.3 Water quality

Groundwater is generally of DWS Class 0, or Ideal to Good water quality (Table 5.18).

# Table 5.18 Borehole water quality in GRU 5

| Quaternary                  | Class per<br>variable | T33F | T33G |
|-----------------------------|-----------------------|------|------|
| Integrated wq<br>Class      |                       | I    | Ι    |
|                             | 0                     | 100  | 100  |
|                             | 1                     | 0    | 0    |
| TDS quality<br>class %      | 2                     | 0    | 0    |
|                             | 3                     | 0    | 0    |
|                             | 4                     | 0    | 0    |
|                             | 0                     | 100  | 100  |
|                             | 1                     | 0    | 0    |
| Nitrate quality<br>class %  | 2                     | 0    | 0    |
| 01033 70                    | 3                     | 0    | 0    |
|                             | 4                     | 0    | 0    |
|                             | 0                     | 100  | 100  |
|                             | 1                     | 0    | 0    |
| Fluoride<br>quality class % | 2                     | 0    | 0    |
|                             | 3                     | 0    | 0    |
|                             | 4                     | 0    | 0    |

# 5.4.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU. Less than 20% of baseflow is from the regional aquifer the remainder originating as interflow (**Table 5.19**).

#### Table 5.19 Groundwater contribution to baseflow in GRU 5

| Quaternary                              |                                               | T33F  | T33G  |
|-----------------------------------------|-----------------------------------------------|-------|-------|
| Baseflow                                | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 3.27  | 3.85  |
|                                         | Interflow<br>(Mm <sup>3</sup> )               | 14.16 | 16.1  |
| Total Base flow                         | (Mm <sup>3</sup> )                            | 17.43 | 19.95 |
| Use (Mm <sup>3</sup> )                  |                                               | 0.294 | 0.35  |
| Present day Baseflow (Mm <sup>3</sup> ) |                                               | 17.43 | 19.87 |
| Baseflow reduct                         | tion (%)                                      | 0     | 0.4   |

# 5.4.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal. The high borehole yields make localised over-abstraction possible but on a regional scale it is unlikely. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which can be significantly impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs are shown in **Table 5.20**.

|              |                                                                                                                                                                                             | Groundwater I                                                     | narrative RQO                                                                                                          |                                                | Groundwater                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|
| Quaternaries | Abstraction                                                                                                                                                                                 | Baseflow                                                          | Water Level                                                                                                            | Water Quality                                  | numerical<br>RQO                                                        |
| T33E-F       | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. | Due to the low<br>groundwater<br>use, monitoring<br>not required. | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to<br>baseflow,<br>monitoring not<br>required. | No water<br>quality<br>monitoring<br>required. | Due to low<br>groundwater<br>stress, no<br>numerical limits<br>are set. |

# 5.5 GRU 6: LOWER MZINTLAVA

# 5.5.1 Hydrogeology

This area forms GRU 6, i.e. the lower Mzintlava from Mount Ayliff to below the confluence with the Mzimvubu River. It contains catchments T32F (Mzintlava), T32G (Mzintlavana), T32H (Mzintlava), and T33K (Mzimvubu). Mount Ayliff is located in T32F, and Flagstaff in T32H.

The GRUs consists of rural areas with some minor irrigated areas. Afforestation exists in T32F and G, but not in T33K. The GRU is not very dependent on groundwater (8–33%).

Rocks of the Ecca Group and Adelaide Subgroup underlie the GRU, with extensive outcrop of dolerite sills (**Figure 5.5**).

Yield characteristics are shown in **Table 5.21**. Yields are relatively high, making localised overexploitation possible.

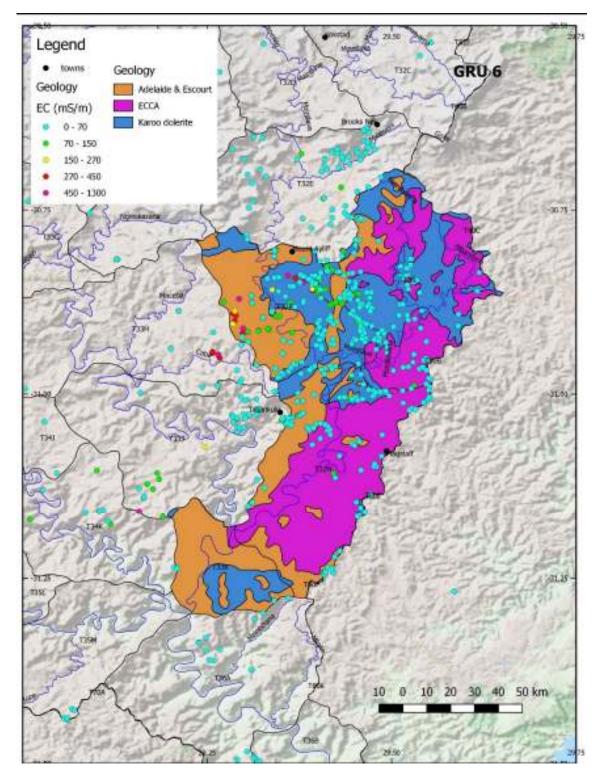



Figure 5.5 Lower Mzintlava GRU 6

#### Table 5.21Borehole yields in GRU 6

| Quaternary             | T32F | T32G | T32H | T33K |
|------------------------|------|------|------|------|
| No of boreholes        | 16   | 20   | 27   | 10   |
| Median yield (l/s)     | 1.4  | 1.59 | 0.7  | 0.9  |
| % of boreholes > 2 l/s | 25   | 40   | 30   | 30   |

#### 5.5.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <15%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.22**).

#### Table 5.22 Groundwater use and resources in GRU 6

| Quaternary                           | T32F  | T32G  | T32H  | T33K  |
|--------------------------------------|-------|-------|-------|-------|
| Recharge (Mm <sup>3</sup> )          | 63.37 | 52.56 | 56.52 | 51.48 |
| Aquifer Recharge (Mm <sup>3</sup> )  | 5.504 | 5.799 | 4.7   | 8.748 |
| Harvest Potential (Mm <sup>3</sup> ) | 4.04  | 5.96  | 6.16  | 2.3   |
| Total use (Mm <sup>3</sup> )         | 0.962 | 0.573 | 0.583 | 0.085 |
| Stress Index                         | 0.123 | 0.048 | 0.105 | 0.009 |
| GW Present<br>Status                 | В     | А     | В     | А     |

#### 5.5.3 Water quality

Groundwater is generally of DWS Class 0-1, or Ideal to Good water quality, however pockets of saline water exist in T32F. The cause is uncertain. Elevated fluorides and nitrates may exist however insufficient data exists to verify this fact (**Table 5.23**).

Table 5.23Borehole water quality in GRU 6

| Quaternary                  | Class per<br>variable | T32F | T32G | T32H | тззк |
|-----------------------------|-----------------------|------|------|------|------|
| Integrated wq<br>Class      |                       | П    | Ι    | I    | I    |
|                             | 0                     | 73   | 87   | 95   | 100  |
|                             | 1                     | 11   | 13   | 5    | 0    |
| TDS quality<br>class %      | 2                     | 0    | 0    | 0    | 0    |
| 61033 70                    | 3                     | 7    | 0    | 0    | 0    |
|                             | 4                     | 6    | 1    | 0    | 0    |
|                             | 0                     |      | 0    |      |      |
|                             | 1                     |      | 100  |      |      |
| Nitrate quality<br>class %  | 2                     |      | 0    |      |      |
|                             | 3                     |      | 0    |      |      |
|                             | 4                     |      | 0    |      |      |
| Fluoride<br>quality class % | 0                     |      | 100  |      |      |
|                             | 1                     |      | 0    |      |      |
|                             | 2                     |      | 0    |      |      |
|                             | 3                     |      | 0    |      |      |

| Quaternary | Class per<br>variable | T32F | T32G | T32H | Т33К |
|------------|-----------------------|------|------|------|------|
|            | 4                     |      | 0    |      |      |

#### 5.5.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU. Less than 20% of baseflow is from the regional aquifer; the remainder originating as interflow (**Table 5.24**).

| Quaternary                              |                                               | T32F  | T32G  | T32H  | T33K  |
|-----------------------------------------|-----------------------------------------------|-------|-------|-------|-------|
| Baseflow                                | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 3     | 4.08  | 4.41  | 1.51  |
|                                         | Interflow<br>(Mm <sup>3</sup> )               | 12.65 | 17.19 | 18.53 | 6.46  |
| Total Base flow (Mm <sup>3</sup> )      |                                               | 15.65 | 21.27 | 22.94 | 7.97  |
| Use (Mm <sup>3</sup> )                  |                                               | 0.962 | 0.573 | 0.583 | 0.085 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                               | 15.26 | 20.46 | 22.21 | 7.97  |
| Baseflow reduc                          | tion (%)                                      | 2.49  | 3.81  | 3.18  | 0     |

 Table 5.24
 Groundwater contribution to baseflow in GRU 6

### 5.5.5 Critical characteristics for setting RQOs

Groundwater use in this GRU is minimal. The high borehole yields make localised over-abstraction possible, but unlikely on a regional scale. The goundwater component of baseflow is low, and the potential of groundwater abstraction impacting on baseflow is low. However, baseflow derived by interflow can be significantly impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrates and fluorides are possible in some localities but insufficient data exists to ascertain this fact.

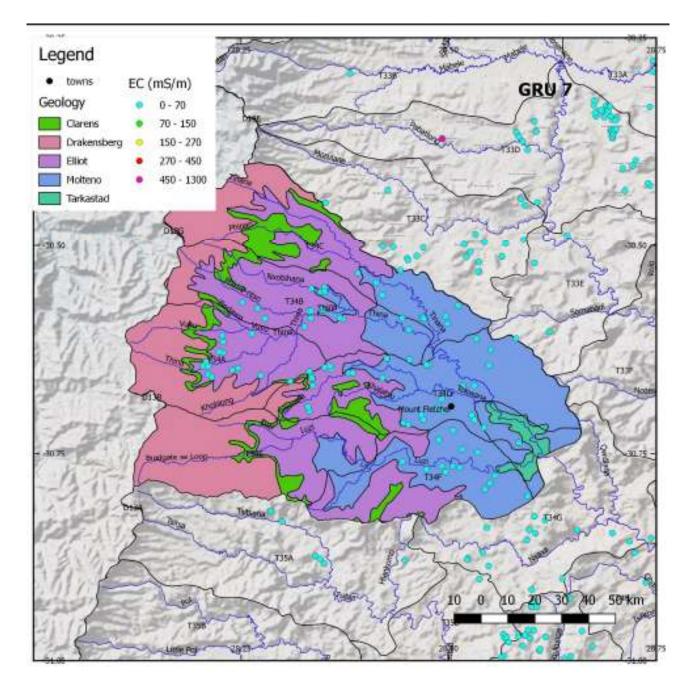
The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs for GRU 6 are shown in **Table 5.25**.

Table 5.25Groundwater RQOs for GRU 6

|                 |                                                                                                                                                     | Groundwater na                                                          | arrative RQO                                                                               |                                                                                                                                  | Groundwater                                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Quaternaries    | Abstraction                                                                                                                                         | Baseflow                                                                | Water Level                                                                                | Water Quality                                                                                                                    | numerical<br>RQO                                                        |
| Т32F-Н,<br>Т33К | All users to comply<br>with existing<br>allocation schedules,<br>including GA and<br>Schedule 1, and<br>individual licence<br>conditions within the | Due to the<br>low<br>groundwater<br>use,<br>monitoring<br>not required. | Due to the<br>low<br>groundwater<br>use and low<br>aquifer<br>contribution<br>to baseflow, | Boreholes may<br>have elevated<br>natural nitrate<br>and fluoride<br>levels, so nitrate<br>and fluoride need<br>to be tested for | Due to low<br>groundwater<br>stress, no<br>numerical<br>limits are set. |
|                 | Harvest Potential.                                                                                                                                  |                                                                         | monitoring not required.                                                                   | domestic<br>boreholes.                                                                                                           |                                                                         |

#### 5.6 GRU 7: UPPER THINA

#### 5.6.1 Hydrogeology


GRU 7 consists of the rugged escarpment zone of the South-eastern Highlands. It contains catchments T34A (Thina), T34B (Phiri e ritso, Nxotshana and Thina), T34C (Tinana and Phipari), T34D (Tokwana and Thina), T34E (Bradgate se Loop and Luzi), and T34F (Luzi). Mount Fletcher is found in T34D.

The GRUs consists of rural areas, with some afforestation in T34B, D and E. Settlements are found in the upper reaches of T31A and B. The area is moderately dependent on groundwater (30–60%).

Rocks of the Drakensberg, Clarens, Elliot and Molteno Formations underlie the GRU (**Figure 5.6**). The yield characteristics are shown in **Table 5.26**. Yields are relatively high, except in T34A, making localised over-exploitation possible.

#### Table 5.26 Borehole yields in GRU 7

| Quaternary             | T34A | T34B | T34C | T34D | T34E | T34F |
|------------------------|------|------|------|------|------|------|
| No of boreholes        | 4    | 24   | 18   | 45   | 1    | 11   |
| Median yield (l/s)     | 0.33 | 0.81 | 0.5  | 1.11 | 2.27 | 0.55 |
| % of boreholes > 2 l/s | 0    | 25   | 33.3 | 31.1 | 100  | 27.3 |



# Figure 5.6 Upper Thina GRU 7

#### 5.6.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/ aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <15%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.27**).

## Table 5.27 Groundwater use and resources in GRU 7

| Quaternary                           | T34A  | T34B   | T34C  | T34D   | T34E  | T34F   |
|--------------------------------------|-------|--------|-------|--------|-------|--------|
| Recharge (Mm <sup>3</sup> )          | 85.55 | 77.15  | 67.53 | 79.37  | 84.76 | 83.98  |
| Aquifer Recharge (Mm <sup>3</sup> )  | 9.982 | 10.458 | 11    | 10.132 | 9.989 | 10.039 |
| Harvest Potential (Mm <sup>3</sup> ) | 6.81  | 3.33   | 5.77  | 4.93   | 6.83  | 3.29   |
| Total use(Mm <sup>3</sup> )          | 0.096 | 0.156  | 0.212 | 0.432  | 0.005 | 0.124  |
| Stress Index                         | 0.002 | 0.009  | 0.014 | 0.034  | 0     | 0.007  |
| GW Present Status                    | Α     | А      | А     | А      | А     | А      |

# 5.6.3 Water quality

Groundwater is generally of DWS Class 0-1, or Ideal to Good water quality. Elevated fuorides and nitrates may exist, but insufficient data is available to determine this (**Table 5.28**).

| Quaternary                 | Class per<br>variable | T34A | T34B | T34C | T34D | T34E | T34F |
|----------------------------|-----------------------|------|------|------|------|------|------|
| Integrated wq<br>Class     |                       | Ι    | Ι    | I    | I    |      | -    |
|                            | 0                     | 100  | 100  | 100  | 100  |      | 100  |
|                            | 1                     | 0    | 0    | 0    | 0    |      | 0    |
| TDS quality<br>class %     | 2                     | 0    | 0    | 0    | 0    |      | 0    |
|                            | 3                     | 0    | 0    | 0    | 0    |      | 0    |
|                            | 4                     | 0    | 0    | 0    | 0    |      | 0    |
|                            | 0                     |      |      | 100  | 0    | 100  |      |
|                            | 1                     |      |      | 0    | 100  | 0    |      |
| Nitrate quality<br>class % | 2                     |      |      | 0    | 0    | 0    |      |
|                            | 3                     |      |      | 0    | 0    | 0    |      |
|                            | 4                     |      |      | 0    | 0    | 0    |      |
|                            | 0                     |      |      | 100  | 100  | 100  |      |
| Fluoride                   | 1                     |      |      | 0    | 0    | 0    |      |
| quality class              | 2                     |      |      | 0    | 0    | 0    |      |
| %                          | 3                     |      |      | 0    | 0    | 0    |      |
|                            | 4                     |      |      | 0    | 0    | 0    |      |

# Table 5.28Borehole water quality in GRU 7

# 5.6.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU. Less than 15% of baseflow is from the regional aquifer; the remainder originates as interflow (**Table 5.29**). No significant baseflow reduction occurs.

## Table 5.29 Groundwater contribution to baseflow in GRU 7

| Quaternary                             |                                               | T34A  | T34B  | T34C  | T34D  | T34E  | T34F  |
|----------------------------------------|-----------------------------------------------|-------|-------|-------|-------|-------|-------|
| Baseflow                               | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 0.19  | 0.11  | 0.15  | 2.17  | 0.38  | 0.75  |
|                                        | Interflow<br>(Mm <sup>3</sup> )               | 11.75 | 11.24 | 11.75 | 14.31 | 12.73 | 10.96 |
| Total Base flow                        | ' (Mm³)                                       | 11.94 | 11.35 | 11.9  | 16.48 | 13.11 | 11.71 |
| Use (Mm <sup>3</sup> )                 |                                               | 0.096 | 0.156 | 0.212 | 0.432 | 0.005 | 0.124 |
| Present day Baseflow(Mm <sup>3</sup> ) |                                               | 11.94 | 11.27 | 11.9  | 16.36 | 12.51 | 11.25 |
| Baseflow reduc                         | tion (%)                                      | 0.00  | 0.70  | 0.00  | 0.73  | 4.58  | 3.93  |

# 5.6.5 Critical characteristics for setting RQOs

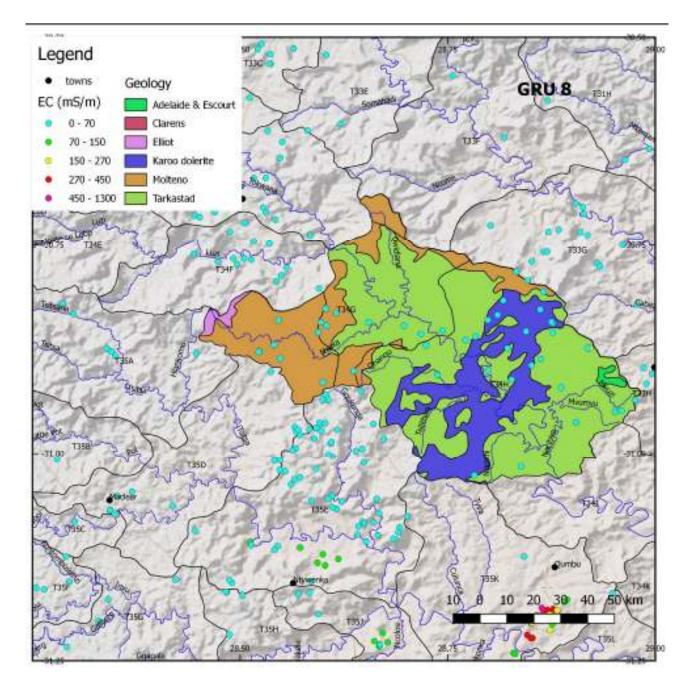
Groundwater use in the GRU is minimal. The high borehole yields make localised over-abstraction possible, unlikely regionally. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which can be significantly impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrates and fluorides in some localities can be associated with doleritic intrusions and the removal of vegetation.

The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs for GRU 7 are shown on **Table 5.30**.

|              |                                                                                                                                                                                             | Groundwater                                                       |                                                                                                                        |                                                |                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|
| Quaternaries | Abstraction                                                                                                                                                                                 | Baseflow                                                          | Water Level                                                                                                            | Water Quality                                  | numerical<br>RQO                                                        |
| T34A-F       | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. | Due to the low<br>groundwater<br>use, monitoring<br>not required. | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to<br>baseflow,<br>monitoring not<br>required. | No water<br>quality<br>monitoring<br>required. | Due to low<br>groundwater<br>stress, no<br>numerical limits<br>are set. |

## Table 5.30Groundwater RQOs for GRU 7


# 5.7 GRU 8: MIDDLE THINA

## 5.7.1 Hydrogeology

This area forms GRU 8, the Middle Thina from the confluence with the Luzi to T34H. It contains catchments T34G and T34H.

The GRUs consists of rural areas, with dryland irrigation. Significant afforestation exists, especially in T34H, which has resulted in significant baseflow depletion (17%) (DWS, 2017e). T34G is moderately dependent on groundwater.

Rocks of the Tarkastad Subgroup underlie most of the GRU, with the Molteno Formation underlying the high lying areas. and Adelaide Subgroup underlie most of the GRU (**Figure 5.7**).



# Figure 5.7 Middle Thina GRU 8

The yield characteristics are shown in **Table 5.31**. Yields are relatively high, making localised overexploitation possible.

## Table 5.31Borehole yields in GRU 8

| Quaternary             | T34G | T34H   |
|------------------------|------|--------|
| No of boreholes        | 25   | 19     |
| Median yield (l/s)     | 1.3  | 2      |
| % of boreholes > 2 l/s | 32   | 47.368 |

#### 5.7.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <15%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.32**).

## Table 5.32 Groundwater use and resources in GRU 8

| Quaternary                           | T34G  | T34H  |
|--------------------------------------|-------|-------|
| Recharge (Mm <sup>3</sup> )          | 86.38 | 84.79 |
| Aquifer Recharge (Mm <sup>3</sup> )  | 9.979 | 9.866 |
| Harvest Potential (Mm <sup>3</sup> ) | 5.74  | 9.35  |
| Total use(Mm <sup>3</sup> )          | 0.282 | 0.617 |
| Stress Index                         | 0.026 | 0.037 |
| GW Present Status                    | Α     | А     |

## 5.7.3 Water quality

Groundwater is generally of DWS Class 0, or Ideal to Good water quality (Table 5.33).

 Table 5.33
 Borehole water quality in GRU 8

| Quaternary                  | Class per<br>variable | T34G | Т34Н |
|-----------------------------|-----------------------|------|------|
| Integrated wq Class         |                       | I    | I    |
|                             | 0                     | 100  | 95   |
|                             | 1                     | 0    | 0    |
| TDS quality class %         | 2                     | 0    | 0    |
|                             | 3                     | 0    | 0    |
|                             | 4                     | 0    | 0    |
| Nitrate quality class %     | 0                     | 100  |      |
|                             | 1                     | 0    |      |
|                             | 2                     | 0    |      |
|                             | 3                     | 0    |      |
|                             | 4                     | 0    |      |
|                             | 0                     | 100  |      |
| Fluoride quality class<br>% | 1                     | 0    |      |
|                             | 2                     | 0    |      |
|                             | 3                     | 0    |      |
|                             | 4                     | 0    |      |

Determination of Water Resource Classes and Resource Quality Objectives for the Water Resources in the Mzimvubu Catchment Project No. WP 11004 / Wetlands and Groundwater RQO Report Page 5-24

## 5.7.4 Groundwater contribution to baseflow

Afforestation has had a moderate impact on groundwater baseflow in T34H. Less than 15% of baseflow is from the regional aquifer the remainder originating as interflow (**Table 5.34**).

 Table 5.34
 Groundwater contribution to baseflow in GRU 8

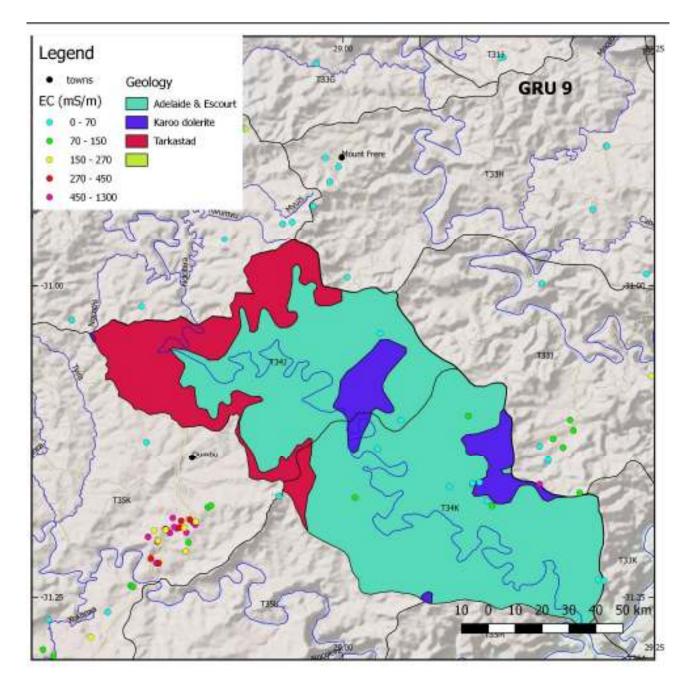
| Quaternary                              |                                               | T34G  | T34H  |
|-----------------------------------------|-----------------------------------------------|-------|-------|
| Baseflow                                | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 2.56  | 4.56  |
|                                         | Interflow<br>(Mm <sup>3</sup> )               | 16.15 | 26.92 |
| Total Base flow (Mm <sup>3</sup> )      |                                               | 18.71 | 31.48 |
| Use (Mm <sup>3</sup> )                  |                                               | 0.282 | 0.617 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                               | 18.29 | 27.9  |
| Baseflow reduction (%)                  |                                               | 2.24  | 11.37 |

# 5.7.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal. The high borehole yields make localised over-abstraction possible, but unlikely on a regional scale. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which can be significantly impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs for GRU 8 are shown in **Table 5.35**.

| Table 5.35 | Groundwater RQOs for GRU 8 |
|------------|----------------------------|
|------------|----------------------------|


|              |                                                                                                                                                                                             | Groundwater                                                       |                                                                                                                        |                                                |                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|
| Quaternaries | Abstraction                                                                                                                                                                                 | Baseflow                                                          | Water Level                                                                                                            | Water Quality                                  | numerical<br>RQO                                                        |
| T34G and H   | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. | Due to the low<br>groundwater<br>use, monitoring<br>not required. | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to<br>baseflow,<br>monitoring not<br>required. | No water<br>quality<br>monitoring<br>required. | Due to low<br>groundwater<br>stress, no<br>numerical limits<br>are set. |

# 5.8 GRU 9: LOWER THINA

# 5.8.1 Hydrogeology

This area forms GRU 9, the Lower Thina from GRU 8 to the confluence with the Tsitsa. It contains catchments T34J and T34K. The GRUs consists of rural areas. Some afforestation exists in T34J,

with dependency on groundwater being low. Rocks of the Adelaide Subgroup Formation underlie most of the GRU, with the Tarkastad Formation underlying the upper reaches of T34J (**Figure 5.8**).



## Figure 5.8 Lower Thina GRU 9

The yield characteristics are shown in **Table 5.36**. Yields are moderate, making localised overexploitation unlikely.

| Table 5.36Borehole yields in GRU 9 |
|------------------------------------|
|------------------------------------|

| Quaternary             | T34J | T34K |
|------------------------|------|------|
| No of boreholes        | 21   | 16   |
| Median yield (l/s)     | 0.55 | 0.51 |
| % of boreholes > 2 l/s | 23.8 | 12.5 |

#### 5.8.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <33%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.37**).

| Table 5.37 | Groundwater use and resources in GRU 9 |
|------------|----------------------------------------|
|            |                                        |

| Quaternary                           | T34J  | T34K       |
|--------------------------------------|-------|------------|
| Recharge (Mm <sup>3</sup> )          | 37.07 | 33.48      |
| Aquifer Recharge (Mm <sup>3</sup> )  | 10.69 | 10.91<br>7 |
| Harvest Potential (Mm <sup>3</sup> ) | 4.35  | 4.53       |
| Total use(Mm <sup>3</sup> )          | 0.016 | 0.406      |
| Stress Index                         | 0.001 | 0.011      |
| GW Present Status                    | A     | А          |

#### 5.8.3 Water quality

Groundwater is generally of DWS Class 0, or Ideal to Good water quality (**Table 5.38**). Some poor quality groundwater exists in T34K, but the results are based on only 1 borehole so are not conclusive.

## Table 5.38Borehole water quality in GRU 8

| Quaternary                  | Class per<br>variable | T34J | T34K |
|-----------------------------|-----------------------|------|------|
| Integrated wq<br>Class      |                       | I    | П    |
|                             | 0                     | 100  | 64   |
|                             | 1                     | 0    | 18   |
| TDS quality<br>class %      | 2                     | 0    | 0    |
| Class 70                    | 3                     | 0    | 0    |
|                             | 4                     | 0    | 9    |
|                             | 0                     |      |      |
|                             | 1                     |      |      |
| Nitrate quality<br>class %  | 2                     |      |      |
|                             | 3                     |      |      |
|                             | 4                     |      |      |
|                             | 0                     |      |      |
|                             | 1                     |      |      |
| Fluoride<br>quality class % | 2                     |      |      |
| quality class /0            | 3                     |      |      |
|                             | 4                     |      |      |

## 5.8.4 Groundwater contribution to baseflow

Abstraction has had a minimal impact on groundwater baseflow. Less than 15% of baseflow is from the regional aquifer; the remainder originating as interflow (**Table 5.39**).

## Table 5.39 Groundwater contribution to baseflow in GRU 9

| Quaternary             |                                               | T34J  | T34K |
|------------------------|-----------------------------------------------|-------|------|
| Baseflow               | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 2.15  | 2.25 |
|                        | Interflow<br>(Mm <sup>3</sup> )               | 9.15  | 9.81 |
| Total Base flow (      | 11.3                                          | 12.06 |      |
| Use (Mm <sup>3</sup> ) | 0.016                                         | 0.406 |      |
| Present day Base       | 11.21                                         | 12.04 |      |
| Baseflow reduction     | on (%)                                        | 0.80  | 0.17 |

# 5.8.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal. The moderate high borehole yields make localised overabstraction unlikely. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which can be significantly impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. High salinity exists in T34K, but the results are for only 1 borehole, so are not conclusive. The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs for GRU 9 are shown in **Table 5.40**.

|              |                                                                                                                                                                                             | Groundwater I                                                     | narrative RQO                                                                                                          |                                                                                                                                                                    | Groundwater                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Quaternaries | Abstraction                                                                                                                                                                                 | Baseflow                                                          | Water Level                                                                                                            | Water Quality                                                                                                                                                      | numerical<br>RQO                                                        |
| T34J and K   | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. | Due to the low<br>groundwater<br>use, monitoring<br>not required. | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to<br>baseflow,<br>monitoring not<br>required. | No water<br>quality<br>monitoring<br>required,<br>however<br>additional data<br>on water<br>quality is<br>needed to<br>identify water<br>quality problem<br>areas. | Due to low<br>groundwater<br>stress, no<br>numerical limits<br>are set. |

## Table 5.40 Groundwater RQOs for GRU 9

# 5.9 GRU 10: UPPER TSITSA

# 5.9.1 Hydrogeology

GRU 10 consists of the rugged escarpment zone of the South-eastern Highlands of the upper Tsitsa catchments. It consists of catchments T35A (Tsitsa and Tsitsana), T35B (Pot and Little Pot), T35C (Mooi), T35D (Tsitsa, Pot and Mooi), T35F (Inxu), and T35G (Gatberg and Gqaqala). Maclear is located in T35D and Ugie in T35F.

The GRUs consists of rangelands and rural areas, with irrigated lands concentrated mostly in T35G. Significant afforestation exists, which has resulted in interflow depletion, especially in the Gat and Inxu catchments. The area is variably dependent on groundwater, with T35A, B, D and G being moderately dependent on groundwater (40–60%), and T35C and F not being dependent (3–4%).

Rocks of the Drakensberg, Clarens, Elliot and Molteno Formations underlie the GRU (Figure 5.9).

The yield characteristics are shown in **Table 5.41**. Yields are relatively high, making localised overexploitation a possibility.

| Quaternary             | T35A | T35B | T35C | T35D | T35F | T35G |
|------------------------|------|------|------|------|------|------|
| No of boreholes        | 10   | 1    | 2    | 4    | 2    | 6    |
| Median yield (l/s)     | 0.47 | 0.05 | 0.4  | 3.5  | 4.6  | 4.5  |
| % of boreholes > 2 l/s | 20   | 0    | 0    | 75   | 100  | 66.7 |

Table 5.41Borehole yields for GRU 10

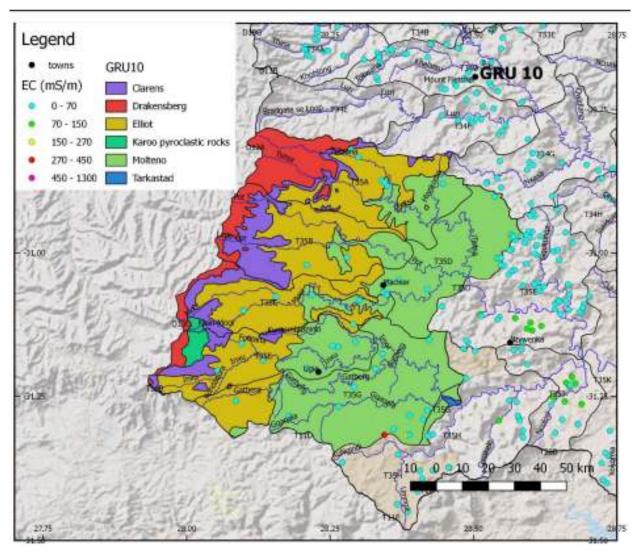



Figure 5.9 Upper Tsitsa GRU 10

#### 5.9.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/ aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <15%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.42**).

| Quaternary                           | T35A  | T35B  | T35C   | T35D  | T35F  | T35G   |
|--------------------------------------|-------|-------|--------|-------|-------|--------|
| Recharge (Mm <sup>3</sup> )          | 92.37 | 93.13 | 114.27 | 77.79 | 85.63 | 67.62  |
| Aquifer Recharge (Mm <sup>3</sup> )  | 9.143 | 9.152 | 8.253  | 9.974 | 9.897 | 11.076 |
| Harvest Potential (Mm <sup>3</sup> ) | 9.34  | 6.04  | 11.02  | 5.5   | 5.57  | 7.9    |
| Total use(Mm <sup>3</sup> )          | 0.179 | 0.008 | 0.02   | 0.086 | 0.021 | 0.116  |
| Stress Index                         | 0.011 | 0     | 0.001  | 0.007 | 0.001 | 0.009  |
| GW Present<br>Status                 | A     | А     | А      | А     | А     | А      |

## Table 5.42 Groundwater Use and resources in GRU 10

## 5.9.3 Water quality

Groundwater is generally of DWS Class 0-1, or Ideal to Good water quality. Insufficient water quality data exists for the GRU (**Table 5.43**).

| Table 5.43 | Borehole water quality in GRU 10 |
|------------|----------------------------------|
|------------|----------------------------------|

| Quaternary                             | Class<br>per<br>variable | T35A | T35B | T35C | T35D | T35F | T35G |
|----------------------------------------|--------------------------|------|------|------|------|------|------|
| Integrated water<br>quality (wq) Class |                          | I    | Ι    |      |      |      |      |
|                                        | 0                        | 100  | 100  |      |      |      |      |
|                                        | 1                        | 0    | 0    |      |      |      |      |
| TDS quality class<br>%                 | 2                        | 0    | 0    |      |      |      |      |
| 70                                     | 3                        | 0    | 0    |      |      |      |      |
|                                        | 4                        | 0    | 0    |      |      |      |      |
|                                        | 0                        |      | 100  |      |      |      |      |
|                                        | 1                        |      | 0    |      |      |      |      |
| Nitrate quality class %                | 2                        |      | 0    |      |      |      |      |
| 70                                     | 3                        |      | 0    |      |      |      |      |
|                                        | 4                        |      | 0    |      |      |      |      |
|                                        | 0                        |      | 100  |      |      |      |      |
| Fluoride quality class %               | 1                        |      | 0    |      |      |      |      |
|                                        | 2                        |      | 0    |      |      |      |      |
|                                        | 3                        |      | 0    |      |      |      |      |
|                                        | 4                        |      | 0    |      |      |      |      |

## 5.9.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU, however SFRs have caused significant baseflow depletion. Less than 15% of baseflow is from the regional aquifer; the remainder originating as interflow (**Table 5.44**).

| Quaternary                              |                                         | T35A  | T35B  | T35C  | T35D  | T35F  | T35G  |
|-----------------------------------------|-----------------------------------------|-------|-------|-------|-------|-------|-------|
| Baseflow                                | Groundwater baseflow (Mm <sup>3</sup> ) | 0.94  | 1.21  | 1.27  | 0.98  | 1.22  | 1.64  |
| Dasenow                                 | Interflow (Mm <sup>3</sup> )            | 12.91 | 10.29 | 22.39 | 8.23  | 8.7   | 12.09 |
| Total Base flow (Mm <sup>3</sup> )      |                                         | 13.85 | 11.5  | 23.66 | 9.21  | 9.92  | 13.73 |
| Use (Mm <sup>3</sup> )                  |                                         | 0.179 | 0.008 | 0.02  | 0.086 | 0.021 | 0.116 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                         | 11.72 | 10.56 | 16.46 | 8.39  | 5.57  | 11.62 |
| Baseflow reduction (%)                  |                                         | 15.38 | 8.17  | 30.43 | 8.90  | 43.85 | 15.37 |

#### Table 5.44 Groundwater contribution to baseflow in GRU 10

#### 5.9.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal. Yields are relatively high, making localised overexploitation a possibility. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which has been significantly impacted by SFR activities, especially in T35C and T35F.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrates and fluorides in some localities can be associated with doleritic intrusions and the removal of vegetation, however insufficient data exists to assess the extent of this problem.

The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs are shown in **Table 5.45**.

|                       |                                                                                                                                                                                             | Groundwater                                                                                                             | narrative RQO                                                                                                          |                                                                                                                                                                                                                                                 | Groundwater                                                                                                                                        |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Quaternaries          | Abstraction                                                                                                                                                                                 | Baseflow                                                                                                                | Water Level                                                                                                            | Water Quality                                                                                                                                                                                                                                   | numerical<br>RQO                                                                                                                                   |
| T35A-B, T35D,<br>T35G | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual<br>licence<br>conditions<br>within the<br>Harvest<br>Potential. | Due to the low<br>groundwater<br>use, monitoring<br>not required.                                                       | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to<br>baseflow,<br>monitoring not<br>required. | Some<br>boreholes may<br>have elevated<br>natural nitrate<br>and fluoride<br>levels, so<br>nitrate and<br>fluoride need to<br>be tested for<br>domestic<br>boreholes.<br>Insufficient<br>data exists,<br>and data<br>collection is<br>required. | Due to low<br>groundwater<br>stress, no<br>numerical limits<br>are set.                                                                            |
| T35C, T35F            | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual                                                                 | Due to<br>baseflow<br>depletion,<br>further SFR<br>activities<br>should be<br>restricted to<br>use less than<br>the GA. | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to<br>baseflow,<br>monitoring not<br>required  | Some<br>boreholes may<br>have elevated<br>natural nitrate<br>and fluoride<br>levels, so<br>nitrate and<br>fluoride need to<br>be tested for                                                                                                     | Low flows at<br>T3H009 should<br>not be less than<br>an average of<br>8.92 Mm <sup>3</sup> /a for<br>T35C.<br>T35F is<br>ungauged and<br>cannot be |

## Table 5.45 Groundwater RQOs for GRU 10

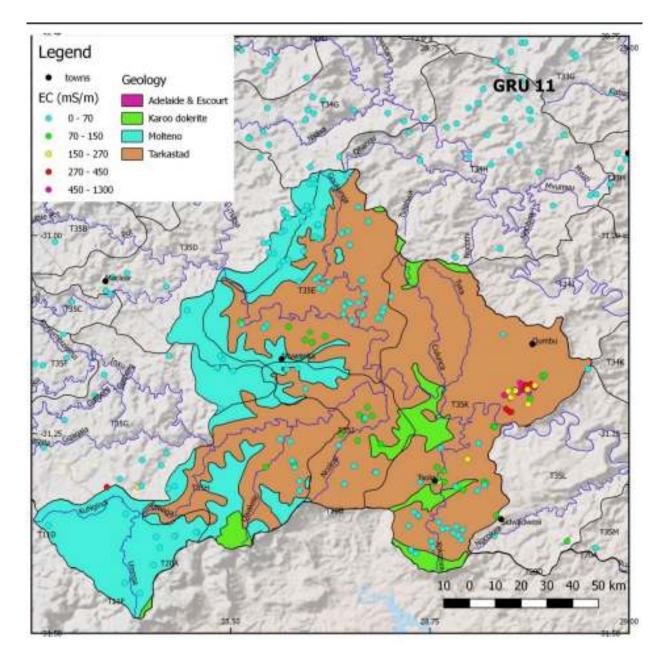
Determination of Water Resource Classes and Resource Quality Objectives for the Water Resources in the Mzimvubu Catchment Project No. WP 11004 / Wetlands and Groundwater RQO Report

|              |                                                              | Groundwater |             |                                                                                                  |                                       |
|--------------|--------------------------------------------------------------|-------------|-------------|--------------------------------------------------------------------------------------------------|---------------------------------------|
| Quaternaries | Abstraction                                                  | Baseflow    | Water Level | Water Quality                                                                                    | numerical<br>RQO                      |
|              | licence<br>conditions<br>within the<br>Harvest<br>Potential. |             |             | domestic<br>boreholes.<br>Insufficient<br>data exists,<br>and data<br>collection is<br>required. | monitored by<br>flow<br>measurements. |

## 5.10 GRU 11: MIDDLE TSITSA

#### 5.10.1 Hydrogeology

GRU 11 consists of the middle Tsitsa from GRU 10 to below Qumbu. It contains catchments T35E (Tsitsa), T35H (Umanga and Qwakele), T35J (Mooi), T35D (Qwakele and Ncolisi), and T35K (Tsitsa). Ntywenka is located in T35E, and Qumbu and Tsolo in T35K.


The GRUs consists of rural areas, with significant afforestation in T35J and K. The area is moderately dependent on groundwater (25–50%).

Rocks of the Molteno Formation and Tarkastad Subgroup underlie the GRU (Figure 5.10).

The yield characteristics are shown in **Table 5.46**. Yields are relatively high, making localised overexploitation possible.

#### Table 5.46Borehole yields for GRU 11

| Quaternary             | T35E   | T35H | T35J | T35K |
|------------------------|--------|------|------|------|
| No of boreholes        | 51     | 37   | 20   | 98   |
| Median yield (l/s)     | 1      | 1    | 0.6  | 1    |
| % of boreholes > 2 l/s | 41.176 | 40.5 | 25   | 31.6 |



# Figure 5.10 Middle Tsitsa GRU 11

## 5.10.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <15%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.47**).

| Table 5.47 | Groundwater use and resources in GRU 11 |
|------------|-----------------------------------------|
|------------|-----------------------------------------|

| Quaternary                           | T35E  | T35H  | T35J  | T35K   |
|--------------------------------------|-------|-------|-------|--------|
| Recharge (Mm <sup>3</sup> )          | 97.94 | 86.44 | 107.8 | 80.88  |
| Aquifer Recharge (Mm <sup>3</sup> )  | 8.738 | 9.645 | 8.893 | 10.147 |
| Harvest Potential (Mm <sup>3</sup> ) | 6.69  | 8.23  | 3.31  | 10.99  |
| Total use(Mm <sup>3</sup> )          | 0.217 | 0.42  | 0.246 | 1.596  |

Determination of Water Resource Classes and Resource Quality Objectives for the Water Resources in the Mzimvubu Catchment Project No. WP 11004 / Wetlands and Groundwater RQO Report

| Quaternary           | T35E  | T35H  | T35J  | T35K  |
|----------------------|-------|-------|-------|-------|
| Stress Index         | 0.019 | 0.039 | 0.016 | 0.149 |
| GW Present<br>Status | А     | А     | А     | В     |

## 5.10.3 Water quality

Groundwater is generally of DWS Class 0-1, or Ideal to Good water quality. Poor water quality exists in T35K near Qumbu. Insufficient water quality data exists for evaluating nitrate and fluoride levels (**Table 5.48**).

| Quaternary                  | Class per<br>variable | T35E | T35H | T35J | T35K |
|-----------------------------|-----------------------|------|------|------|------|
| Integrated wq<br>Class      |                       | I    | Ι    | I    | П    |
|                             | 0                     | 91   | 89   | 47   | 37   |
|                             | 1                     | 9    | 11   | 47   | 24   |
| TDS quality<br>class %      | 2                     | 0    | 0    | 6    | 0    |
|                             | 3                     | 0    | 0    | 0    | 14   |
|                             | 4                     | 0    | 0    | 0    | 14   |
|                             | 0                     |      | 100  | 0    |      |
|                             | 1                     |      | 0    | 100  |      |
| Nitrate quality<br>class %  | 2                     |      | 0    | 0    |      |
|                             | 3                     |      | 0    | 0    |      |
|                             | 4                     |      | 0    | 0    |      |
|                             | 0                     |      | 100  | 100  |      |
|                             | 1                     |      | 0    | 0    |      |
| Fluoride<br>quality class % | 2                     |      | 0    | 0    |      |
|                             | 3                     |      | 0    | 0    |      |
|                             | 4                     |      | 0    | 0    |      |

# Table 5.48 Borehole water quality in GRU 11

## 5.10.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU, however SFRs have caused moderate baseflow depletion. Less than 15% of baseflow is from the regional aquifer, with the remainder originating as interflow (**Table 5.49**).

| Table 5.49  | Groundwater | contribution to | haseflow | in GRU 11 |
|-------------|-------------|-----------------|----------|-----------|
| 1 able 5.45 | Groundwater | contribution to | Dasenow  |           |

| Quaternary                              |                                               | T35E  | T35H  | T35J  | T35K  |
|-----------------------------------------|-----------------------------------------------|-------|-------|-------|-------|
| Baseflow                                | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 1.82  | 1.98  | 0.37  | 1.73  |
|                                         | Interflow<br>(Mm <sup>3</sup> )               | 13.26 | 12.88 | 6.21  | 15.24 |
| Total Base flow (Mm <sup>3</sup> )      |                                               | 15.08 | 14.02 | 5.71  | 15.82 |
| Use (Mm <sup>3</sup> )                  |                                               | 0.217 | 0.42  | 0.246 | 1.596 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                               | 13.58 | 14.02 | 5.71  | 15.82 |
| Baseflow reduction (%)                  |                                               | 9.95  | 5.65  | 13.22 | 6.78  |

Determination of Water Resource Classes and Resource Quality Objectives for the Water Resources in the Mzimvubu Catchment Project No. WP 11004 / Wetlands and Groundwater RQO Report

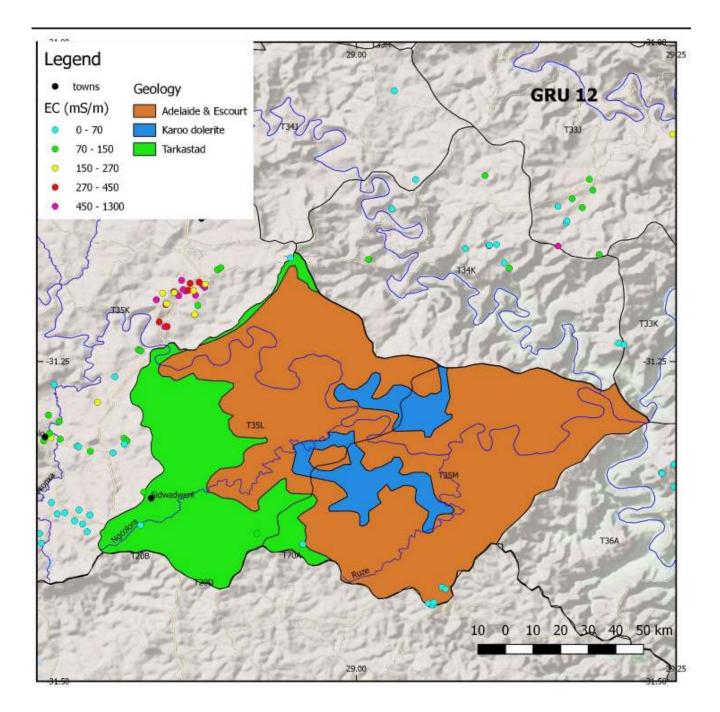
# 5.10.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal. The relatively high borehole yields make localised overabstraction possible, although no regional impacts are expected. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which has been impacted by SFR activities in T35E, T35H and T35J.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrate and fluoride levels are possible in some localities and will be associated with doleritic intrusions and the removal of vegetation, however insufficient data exists to assess the extent of this problem.

The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs are shown in **Table 5.50**.

|              |                                                                                                                                        | Groundwater                                                                                                                        | narrative RQO                                                                                                          |                                                                                                                                                         | Groundwater                                                             |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Quaternaries | Abstraction                                                                                                                            | Baseflow                                                                                                                           | Water Level                                                                                                            | Water Quality                                                                                                                                           | numerical<br>RQO                                                        |
| Т35Е, Т35Н-К | All users to<br>comply with<br>existing<br>allocation<br>schedules,<br>including GA<br>and Schedule<br>1, and<br>individual<br>licence | Due to<br>baseflow<br>depletion,<br>further SFR<br>activities<br>should be<br>assessed in<br>terms of<br>baseflow<br>depletion and | Due to the low<br>groundwater<br>use and low<br>aquifer<br>contribution to<br>baseflow,<br>monitoring not<br>required. | Some<br>boreholes may<br>have elevated<br>natural nitrate<br>and fluoride<br>levels, so<br>nitrate and<br>fluoride need to<br>be tested for<br>domestic | Due to low<br>groundwater<br>stress, no<br>numerical limits<br>are set. |
|              | conditions<br>within the<br>Harvest<br>Potential.                                                                                      | downstream<br>EWRs.                                                                                                                |                                                                                                                        | boreholes.<br>Insufficient<br>data exists,<br>and data<br>collection is<br>required.                                                                    |                                                                         |


#### Table 5.50Groundwater RQOs for GRU 11

## 5.11 GRU 12: LOWER TSITSA

## 5.11.1 Hydrogeology

This area forms GRU 12, the Lower Tsitsa from GRU 8 to the confluence with the Thina. It contains catchments T35L and T35M.

The GRUs consists of rural areas. Some afforestation exists in T35L. Dependency on groundwater is low. Rocks of the Adelaide Subgroup Formation underlie most of the GRU, with the Tarkastad Subgroup underlying the upper reaches of T35L (**Figure 5.11**).



# Figure 5.11 Lower Tsitsa GRU 12

The yield characteristics are shown in **Table 5.51**. Yields are relatively high, making localised overexploitation possible.

## Table 5.51Borehole yields for GRU 12

| Quaternary             | T35L | T35M   |
|------------------------|------|--------|
| No of boreholes        | 31   | 21     |
| Median yield (l/s)     | 1.3  | 2.5    |
| % of boreholes > 2 l/s | 39   | 57.143 |

#### 5.11.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <30%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.52**).

| Quaternary                           | T35L   | T35M  |
|--------------------------------------|--------|-------|
| Recharge (Mm <sup>3</sup> )          | 38.08  | 54.38 |
| Aquifer Recharge (Mm <sup>3</sup> )  | 10.799 | 9.545 |
| Harvest Potential (Mm <sup>3</sup> ) | 5.13   | 4.17  |
| Total use(Mm <sup>3</sup> )          | 0.266  | 0.146 |
| Stress Index                         | 0.021  | 0.014 |
| GW Present Status                    | Α      | А     |

## Table 5.52 Groundwater use and resources in GRU 12

#### 5.11.3 Water quality

Groundwater is generally of DWS Class 0-1, or Ideal to Good water quality. Insufficient water quality data exists for evaluating the nitrates and fluorides (**Table 5.53**).

| Quaternary                  | Class per variable | T35L | T35M |
|-----------------------------|--------------------|------|------|
| Integrated wq Class         |                    | I    | Ι    |
|                             | 0                  | 50   | 88   |
|                             | 1                  | 50   | 13   |
| TDS quality class %         | 2                  | 0    | 0    |
|                             | 3                  | 0    | 0    |
|                             | 4                  | 0    | 0    |
|                             | 0                  |      |      |
|                             | 1                  |      |      |
| Nitrate quality class %     | 2                  |      |      |
|                             | 3                  |      |      |
|                             | 4                  |      |      |
|                             | 0                  |      |      |
| Electricity and the         | 1                  |      |      |
| Fluoride quality<br>class % | 2                  |      |      |
|                             | 3                  |      |      |
|                             | 4                  |      |      |

#### Table 5.53Borehole water quality in GRU 12

#### 5.11.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU. Less than 20% of baseflow is from the regional aquifer; the remainder originating as interflow (**Table 5.54**).

## Table 5.54 Groundwater contribution to baseflow in GRU 12

| Quaternary                              |                                               | T35L  | T35M  |
|-----------------------------------------|-----------------------------------------------|-------|-------|
| Baseflow                                | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 2.44  | 2.88  |
|                                         | Interflow<br>(Mm <sup>3</sup> )               | 10.51 | 11.69 |
| Total Base flow (Mm <sup>3</sup> )      |                                               | 12.95 | 14.57 |
| Use (Mm <sup>3</sup> )                  |                                               | 0.266 | 0.146 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                               | 12.86 | 14.52 |
| Baseflow reduction (%)                  |                                               | 0.69  | 0.34  |

## 5.11.5 Critical characteristics for setting RQOs

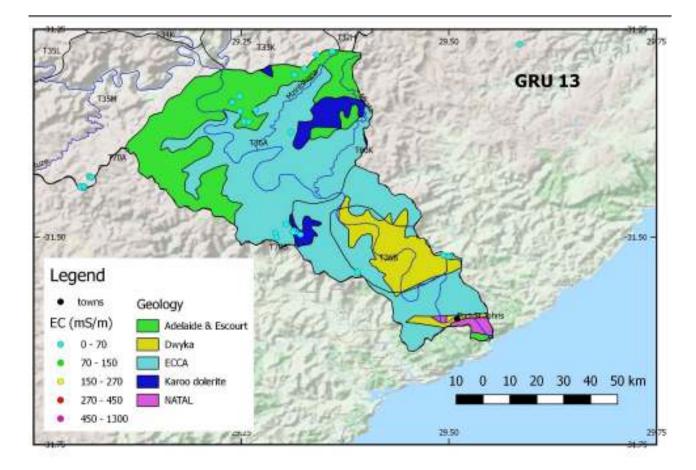
Groundwater use in the GRU is minimal. The relatively high borehole yields make localised overabstraction possible; regional impacts are not expected. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which can be impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrate and fluoride levels are possible in some localities and will be associated with doleritic intrusions and the removal of vegetation, however insufficient data exists to assess the extent of this problem.

The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs are shown in **Table 5.55**.

|              |                                                | Groundwater     | narrative RQO   |                  | Groundwater      |
|--------------|------------------------------------------------|-----------------|-----------------|------------------|------------------|
| Quaternaries | Abstraction Baseflow Water Level Water Quality |                 | Water Quality   | numerical<br>RQO |                  |
| T35L-M       | All users to                                   | Due to the low  | Due to the low  | Some             | Due to low       |
|              | comply with                                    | groundwater     | groundwater     | boreholes may    | groundwater      |
|              | existing                                       | use, monitoring | use and low     | have elevated    | stress, no       |
|              | allocation                                     | not required.   | aquifer         | natural nitrate  | numerical limits |
|              | schedules,                                     |                 | contribution to | and fluoride     | are set.         |
|              | including GA                                   |                 | baseflow,       | levels, so       |                  |
|              | and Schedule                                   |                 | monitoring not  | nitrate and      |                  |
|              | 1, and                                         |                 | required.       | fluoride need to |                  |
|              | individual                                     |                 |                 | be tested for    |                  |
|              | licence                                        |                 |                 | domestic         |                  |
|              | conditions                                     |                 |                 | boreholes.       |                  |
|              | within the                                     |                 |                 | Insufficient     |                  |
|              | Harvest                                        |                 |                 | data exists,     |                  |
|              | Potential.                                     |                 |                 | and data         |                  |
|              |                                                |                 |                 | collection is    |                  |
|              |                                                |                 |                 | required.        |                  |

## Table 5.55Groundwater RQOs for GRU 12


## 5.12 GRU 13: LOWER MZIMVUBU

#### 5.12.1 Hydrogeology

This area forms the Lower Mzimvubu catchment from the confluence of the Thina and Tsitsa to the sea. It contains catchments T36A and T36B. Port St Johns is located in this area at the coast.

The GRUs consists of rural areas. Some irrigation occurs in both catchments. Dependency on groundwater is low.

Rocks of the Adelaide Subgroup and Ecca Group underlie most of the GRU, with the Dwyka Group outcropping in T36B (**Figure 5.12**).



#### Figure 5.12 Lower Mzimvubu GRU

The yield characteristics are shown in **Table 5.56**. Yields are moderate, making localised overexploitation unlikely, however, few data points are available and the assessment is of low confidence.

| Table 5.56 | Borehole yields for GRU 13 |
|------------|----------------------------|
|------------|----------------------------|

| Quaternary             | T36A | T36B |
|------------------------|------|------|
| No of boreholes        | 3    | 7    |
| Median yield (l/s)     | 0.33 | 0.3  |
| % of boreholes > 2 l/s | 0    | 14.3 |

Determination of Water Resource Classes and Resource Quality Objectives for the Water Resources in the Mzimvubu Catchment Project No. WP 11004 / Wetlands and Groundwater RQO Report

Page 5-39

#### 5.12.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <15%, with the remainder generating baseflow via interflow or lost to evapotranspiration (Table 5.57).

| Table 5.57 Groundwater use and resources i | in GRU 13 |
|--------------------------------------------|-----------|
|--------------------------------------------|-----------|

| Quaternary                           | T36A   | T36B  |
|--------------------------------------|--------|-------|
| Recharge (Mm <sup>3</sup> )          | 70.17  | 92.12 |
| Aquifer Recharge (Mm <sup>3</sup> )  | 12.693 | 9.188 |
| Harvest Potential (Mm <sup>3</sup> ) | 6.28   | 3.61  |
| Total use(Mm <sup>3</sup> )          | 0.109  | 0.043 |
| Stress Index                         | 0.002  | 0.001 |
| GW Present Status                    | А      | А     |

#### 5.12.3 Water quality

Groundwater is generally of DWS Class 0, Ideal water quality. Insufficient water quality data exists for evaluating nitrate and fluoride levels (Table 5.58).

**Table 5.58** Borehole water quality in GRU 13

| Quaternary               | Class per<br>variable | T36A | T36B |
|--------------------------|-----------------------|------|------|
| Integrated wq Class      |                       | I    | I    |
|                          | 0                     | 100  | 100  |
|                          | 1                     | 0    | I    |
| TDS quality class %      | 2                     | 0    | 0    |
|                          | 3                     | 0    | 0    |
|                          | 4                     | 0    | 0    |
|                          | 0                     |      | 100  |
|                          | 1                     |      | 0    |
| Nitrate quality class %  | 2                     |      | 0    |
|                          | 3                     |      | 0    |
|                          | 4                     |      | 0    |
|                          | 0                     |      | 100  |
|                          | 1                     |      | 0    |
| Fluoride quality class % | 2                     |      | 0    |
| /0                       | 3                     |      | 0    |
|                          | 4                     |      | 0    |

## 5.12.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU. Less than 20% of baseflow is from the regional aquifer; the remainder originating as interflow (Table 5.59).

Page 5-40

## Table 5.59 Groundwater contribution to baseflow in GRU 13

| Quaternary                              |                                               | T36A  | T36B  |
|-----------------------------------------|-----------------------------------------------|-------|-------|
| Baseflow                                | Groundwater<br>baseflow<br>(Mm <sup>3</sup> ) | 5     | 3.37  |
|                                         | Interflow<br>(Mm <sup>3</sup> )               | 22.55 | 15.24 |
| Total Base flow (Mm <sup>3</sup> )      |                                               | 27.55 | 18.61 |
| Use (Mm <sup>3</sup> )                  |                                               | 0.109 | 0.043 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                               | 27.5  | 18.51 |
| Baseflow reduct                         | tion (%)                                      | 0.18  | 0.54  |

## 5.12.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal. The moderate borehole yields make localised overabstraction unlikely. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which can be impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrate and fluoride levels are possible in some localities and will be associated with doleritic intrusions and the removal of vegetation, however insufficient data exists to assess the extent of this problem.

The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs are shown in **Table 5.60**.

|              |                   | Groundwater    |                 |                  |                  |
|--------------|-------------------|----------------|-----------------|------------------|------------------|
| Quaternaries | Abstraction       | Baseflow       | Water Level     | Water Quality    | numerical<br>RQO |
| T36A-B       | All users to      | Due to the low | Due to the low  | Insufficient     | Due to low       |
|              | comply with       | groundwater    | groundwater     | data exists,     | groundwater      |
|              | existing          | use,           | use and low     | and data         | stress, no       |
|              | allocation        | monitoring not | aquifer         | collection is    | numerical limits |
|              | schedules,        | required.      | contribution to | required. Water  | are set.         |
|              | including GA      |                | baseflow,       | quality is       |                  |
|              | and Schedule 1,   |                | monitoring not  | unlikely to be a |                  |
|              | and individual    |                | required.       | problem.         |                  |
|              | licence           |                |                 |                  |                  |
|              | conditions within |                |                 |                  |                  |
|              | the Harvest       |                |                 |                  |                  |
|              | Potential.        |                |                 |                  |                  |

## Table 5.60Groundwater RQOs for GRU 13

#### 5.13 GRU 14; MIDDLE MZIMVUBU

#### 5.13.1 Hydrogeology

GRU 14 consists of the middle Mzimvubu from T31J to the confluence with the Mzintlava River. It contains catchments T31J, T33H and T33J. Mount Frere is located in T33H, and Tabankulu in T33J.

The GRU consists of rural areas and dryland farming, with significant irrigation in T31J. Some afforestation exists in T33H and J. The area is not very dependent on groundwater (<25%).

Nickel deposits in T33H pose a moderate threat to groundwater if mining occurs. Rocks of the Adelaide Subgroup underlie most of the GRU, with significant outcrop of dolerite sheets (**Figure 5.13**).

The yield characteristics are shown in **Table 5.61**. Yields are relatively high, making localised overexploitation possible.

| Quaternary             | T31J | Т33Н | T33J |
|------------------------|------|------|------|
| No of boreholes        | 18   | 24   | 16   |
| Median yield (l/s)     | 1.1  | 1.1  | 0.73 |
| % of boreholes > 2 l/s | 16.7 | 29   | 12.5 |

#### Table 5.61Borehole yields for GRU 14

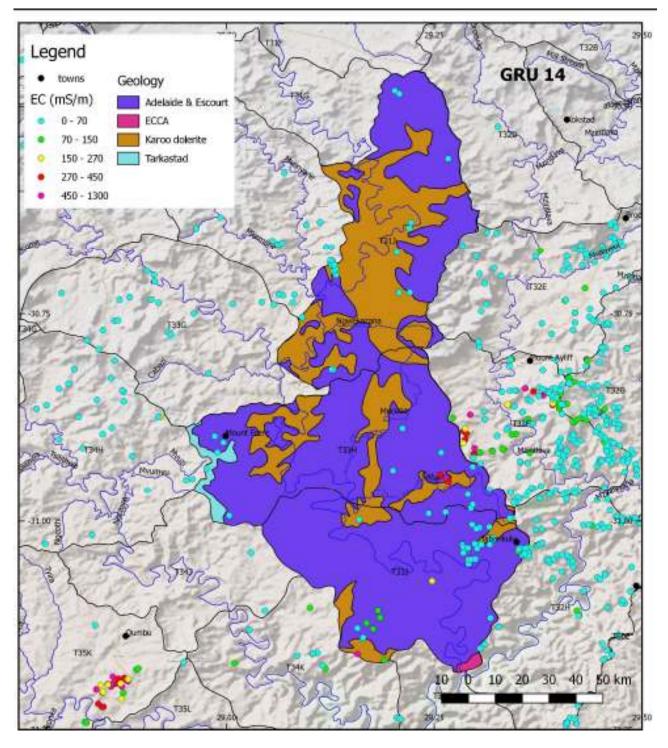



Figure 5.13 Middle Mzimvubu GRU 14

# 5.13.2 Groundwater use and resources

Groundwater use in the GRU is minimal. The stress index (use/aquifer recharge) is low and groundwater resources are under-utilised. Although recharge is high, the proportion reaching the regional aquifer is <30%, with the remainder generating baseflow via interflow or lost to evapotranspiration (**Table 5.62**).

## Table 5.62 Groundwater use and resources in GRU 14

| Quaternary                           | T31J   | T33H   | T33J  |
|--------------------------------------|--------|--------|-------|
| Recharge (Mm <sup>3</sup> )          | 38.3   | 39.24  | 33.15 |
| Aquifer Recharge (Mm <sup>3</sup> )  | 10.275 | 10.636 | 9.383 |
| Harvest Potential (Mm <sup>3</sup> ) | 6.9    | 8.09   | 6.22  |
| Total use(Mm <sup>3</sup> )          | 0.181  | 1.222  | 0.222 |
| Stress Index                         | 0.01   | 0.101  | 0.016 |
| GW Present Status                    | А      | В      | А     |

## 5.13.3 Water quality

Groundwater is generally of DWS Class 0-1, i.e. Ideal or Goodwater quality, except in T33H where unexplained high salinities exist. Insufficient water quality data exist for evaluating nitrate and fluoride levels (**Table 5.63**).

## Table 5.63 Borehole water quality in GRU 14

| Quaternary                  | Class per variable | T31J | T33H | T33J |
|-----------------------------|--------------------|------|------|------|
| Integrated wq Class         |                    | -    |      | I    |
|                             | 0                  | 100  | 67   | 78   |
|                             | 1                  | 0    | 0    | 20   |
| TDS quality class %         | 2                  | 0    | 0    | 0    |
|                             | 3                  | 0    | 17   | 0    |
|                             | 4                  | 0    | 17   | 0    |
|                             | 0                  |      | 83   |      |
|                             | 1                  |      | 17   |      |
| Nitrate quality class %     | 2                  |      | 0    |      |
|                             | 3                  |      | 0    |      |
|                             | 4                  |      | 0    |      |
|                             | 0                  | 83   | 83   |      |
|                             | 1                  | 0    | 17   |      |
| Fluoride quality class<br>% | 2                  | 17   | 0    |      |
|                             | 3                  | 0    | 0    |      |
|                             | 4                  | 0    | 0    |      |

## 5.13.4 Groundwater contribution to baseflow

Groundwater abstraction has a minimal impact on groundwater baseflow in this GRU. Less than 20% of baseflow is from the regional aquifer, with the remainder originating as interflow (**Table 5.64**).

## Table 5.64 Groundwater contribution to baseflow in GRU 14

| Quaternary                              |                                         | T31J  | T33H  | T33J  |
|-----------------------------------------|-----------------------------------------|-------|-------|-------|
| Baseflow                                | Groundwater baseflow (Mm <sup>3</sup> ) | 3.84  | 3.78  | 3.19  |
| Dasellow                                | Interflow (Mm <sup>3</sup> )            |       | 14.1  |       |
| Total Base flow (Mm <sup>3</sup> )      |                                         | 19.41 | 20.22 | 17.29 |
| Use (Mm <sup>3</sup> )                  |                                         | 0.181 | 1.222 | 0.222 |
| Present day Baseflow (Mm <sup>3</sup> ) |                                         | 19.31 | 19.94 | 17.09 |
| Baseflow red                            | uction (%)                              | 0.52  | 1.38  | 1.16  |

## 5.13.5 Critical characteristics for setting RQOs

Groundwater use in the GRU is minimal. The relatively high borehole yields make localised overabstraction possible. The groundwater component of baseflow is low, hence the potential of groundwater abstraction to impact on baseflow is limited. Baseflow is largely derived by interflow, which can be impacted by SFR activities.

The aquifers are of moderate vulnerability. Due to the rural setting, no regional threats to groundwater quality exist. Elevated nitrate and fluoride levels are possible in some localities and will be associated with doleritic intrusions and the removal of vegetation, however insufficient data exists to assess the extent of this problem.

The abstractable volume of groundwater is based on the Harvest Potential. Groundwater RQOs are shown on **Table 5.65**.

|              |                     | Groundwater          |                 |                   |                  |
|--------------|---------------------|----------------------|-----------------|-------------------|------------------|
| Quaternaries | Abstraction         | Baseflow Water Level |                 | Water Quality     | numerical<br>RQO |
| T31J         | All users to        | Due to the           | Due to the low  | Some              | Due to low       |
| T33J         | comply with         | low                  | groundwater     | boreholes may     | groundwater      |
|              | existing allocation | groundwater          | use and low     | have elevated     | stress, no       |
|              | schedules,          | use,                 | aquifer         | natural nitrate   | numerical limits |
|              | including GA and    | monitoring           | contribution to | and fluoride      | are set.         |
|              | Schedule 1, and     | not required.        | baseflow,       | levels, so        |                  |
|              | individual licence  |                      | monitoring not  | nitrate and       |                  |
|              | conditions within   |                      | required.       | fluoride need to  |                  |
|              | the Harvest         |                      |                 | be tested for     |                  |
|              | Potential.          |                      |                 | domestic          |                  |
|              |                     |                      |                 | boreholes.        |                  |
|              |                     |                      |                 | Insufficient      |                  |
|              |                     |                      |                 | data exists,      |                  |
|              |                     |                      |                 | and data          |                  |
|              |                     |                      |                 | collection is     |                  |
|              |                     |                      |                 | required.         |                  |
| T33H         | All users to        | Due to the           | Due to the low  | Some              | Due to low       |
|              | comply with         | low                  | groundwater     | boreholes have    | groundwater      |
|              | existing allocation | groundwater          | use and low     | high salinities   | stress, no       |
|              | schedules,          | use,                 | aquifer         | and salinities in | numerical limits |
|              | including GA and    | monitoring           | contribution to | boreholes         | are set.         |

# Table 5.65 Groundwater RQOs for GRU14

Determination of Water Resource Classes and Resource Quality Objectives for the Water Resources in the Mzimvubu Catchment Project No. WP 11004 / Wetlands and Groundwater RQO Report

|              |                    | Groundwater          |                |               |                  |
|--------------|--------------------|----------------------|----------------|---------------|------------------|
| Quaternaries | Abstraction        | Baseflow Water Level |                | Water Quality | numerical<br>RQO |
|              | Schedule 1, and    | not required.        | baseflow,      | needs to be   |                  |
|              | individual licence |                      | monitoring not | evaluated for |                  |
|              | conditions within  |                      | required.      | planned water |                  |
|              | the Harvest        |                      |                | supply        |                  |
|              | Potential.         |                      |                | boreholes.    |                  |

# 6 CONCLUSIONS AND RECOMMENDATIONS

# 6.1 WETLANDS

Due to the high number of wetlands within the T3 primary catchment and following the recommendations and method guidelines by DWS (2016), specific RQOs were only determined for priority wetlands of High or Very High importance, although the detail of these were constrained by the availability of existing data. Broad-scale catchment and sub-catchment RQOs were determined for all other wetlands. Broad level narrative RQOs for wetlands across the WMA were determined at the quaternary catchment scale, and focussed on averages of PES and EIS categories, mostly from the PESEIS database (DWS, 2014a). These broad scale narrative RQOs specify that the average quaternary level PES and EIS should be maintained and not permitted to deteriorate, and have been developed so that at the least all wetlands, even low priority, have some measure of protection.

Catchment level RQOs were developed at the SQ scale. These specify more detail and at a finer scale than the broad level RQOs and should be used in preference to them. Catchment level RQOs rely on PESEIS data for low or moderate priority wetlands (an improvement from broad scale RQOs only due to finer scale and not a quaternary average) and verified data using a similar but expanded (to include all wetlands within a SQ catchment) method of the PESEIS rationale.

More detailed RQOs were developed for wetlands of High or Very High priority, including floodplains, channelled and unchannelled valley bottoms, flats and seeps. As detailed data of these very high priority individual wetlands were limited, Google Earth © was used to conduct level 1 WET-Health assessments (MacFarlane et al., 2007) for floodplains and to verify PES ratings and wetland metrics in the PESEIS database for channelled valley bottom wetlands. Updated metrics were applicable to all wetlands within an SQ and included wetland habitat modification and wetland continuity (fragmentation and connectivity) modification.

It should be stressed that although RQOs at different levels have been determined, all should be taken into consideration in a tiered fashion. To clarify this approach an example of SQ T35G-06099 is given: The wetlands in this SQ occur in the T35G quaternary catchment and therefore have broad level RQOs that specify that the average PES of a B/C category and EIS of "High" be maintained. These RQOs pertain to measures for water quantity, water quality, habitat, biota and ecosystem services for the SQ. One of the habitat RQOs related to integrity and condition specifies that the PES category of wetlands within this SQ must be maintained according to those listed, which is a category B. Since this is a better measure that the quaternary average of B/C it will take precedence. Similarly, the RQO related to EIS, as a measure of ecosystem services, will be "Very High", rather than the quaternary average of "High". However, this SQ also belongs to one of the high priority floodplains – Gatberg Floodplains – and will therefore also have more detailed RQOs. These will be in addition to those already given, and where overlap exists, precedence should be given to more detailed RQOs that are based on higher quality data.

# 6.2 GROUNDWATER

Recommendations are presented in the form of identifying priority area for monitoring of criteria such as water levels and abstraction, baseflow reduction, and groundwater selected water quality parameters.

## 6.2.1 Priority monitoring areas for water level and abstraction

Based on the level of groundwater stress (stress index of abstraction to aquifer recharge), the following catchments can be considered as priority areas for monitoring abstraction and groundwater level:

| Catchment | Stress Index | Priority |
|-----------|--------------|----------|
| T31F      | 0.341        | Moderate |
| T33A      | 0.371        | Moderate |

## 6.2.2 Priority monitoring areas for baseflow reduction

Based on the degree of baseflow reduction across the study area, the following catchments have been identified where low flow monitoring via gauging stations is relevant in order to evaluate how SFRs impact on the EWRs:

| Catchment | <b>Baseflow Reduction</b> | Priority |
|-----------|---------------------------|----------|
| T35F      | 43.85                     | Moderate |
| T35C      | 30.43                     | Moderate |

## 6.2.3 Priority monitoring areas for water quality

Over large parts of the study area insufficient data exist to characterise groundwater quality based on nitrates and fluoride. The T33-T36 Tertiary catchments lack sufficient data. Due to the prevalence of doleritic intrusions, fluoride levels may be elevated. The degree of removal of vegetation and sanitation practices also suggest that elevated nitrates may be of localised concern

Catchments T35K and T33H have a high proportion of boreholes with elevated salinities. No obvious geological reason for these pockets of salinities exists, and such areas need to be delineated to identify naturally occurring salinity from contamination processes.

# 7 REFERENCES

Berliner, D. and Desmet, P. 2007. Eastern Cape Biodiversity Conservation Plan: Technical Report. Department of Water Affairs and Forestry Project No 2005-012, Pretoria. 1 August 2007.

Dennis, I., Witthusser, K., Vivier, K., Dennis, R. and Mavurayi, A. 2013. Groundwater Resource Directed Measures (2012 Edition). WRC Report TT506/12. Water Research Commission, Pretoria.

Department of Water Affairs (DWA). 2013. National Water Resources Strategy. Second Edition, June 2013.

Department of Water Affairs and Forestry (DWAF). 2006. Groundwater Resource Assessment Phase II (GRA II): Task 1D Groundwater Quantification. Version 2: Final. Prepared by DWAF, SRK, GEOSS and CSIR. Project 2003-150.

Department of Water and Sanitation (DWS). 2014a. A Desktop Assessment of the Present Ecological State, Ecological Importance and Ecological Sensitivity per Sub Quaternary Reaches for Secondary Catchments in South Africa. Secondary: [Mzimvubu (T3)]. Prepared by Scherman Colloty & Associates. Compiled by RQIS-RDM.

Department of Water and Sanitation (DWS). 2014b. Draft DWS Position Paper for the Protection, Use, Development, Management and Control of Wetlands. Department of Water and Sanitation, Pretoria.

Department of Water and Sanitation (DWS). 2016a. Development of Procedures to Operationalise Resource Directed Measures. Wetland tool analysis and standardisation Report. Prepared by: Rivers for Africa eFlows Consulting (Pty) Ltd. Report no RDM/WE/00/CON/ORDM/0616.

Department of Water and Sanitation (DWS), South Africa, 2017a. Determination of Water Resource Classes and Resource Quality Objectives for Water Resources in the Mzimvubu Catchment. Wetland EcoClassification Report. Authored by MacKenzie Ecological & Development Services cc. for Scherman Colloty and Associates cc. Report no. WE/WMA7/00/CON/CLA/0917

Department of Water and Sanitation (DWS). 2017b. Determination of Water Resource Classes and Resource Quality Objectives for Water Resources in the Mzimvubu Catchment. Status Quo and (RU and IUA) Delineation Report. Prepared by Rivers for Africa eFlows Consulting (Pty) Ltd. for Scherman Colloty and Associates cc. Report no. WE/WMA7/00/CON/CLA/0316. Department of Water and Sanitation, Pretoria.

Department of Water and Sanitation (DWS), South Africa, 2017c. Determination of Water Resource Classes and Resource Quality Objectives for Water Resources in the Mzimvubu Catchment. River Desktop EWR and Modelling Report: Volume 2 – Desktop EWR Assessment. Authored by Birkhead, A (Streamflow Solutions) and Louw, D (Rivers for Africa eFlows Consulting) for Scherman Colloty and Associates cc. Report no. WE/WMA7/00/CON/CLA/0217, Volume 2.

Department of Water and Sanitation (DWS), South Africa, 2017d. Determination of Water Resource Classes and Resource Quality Objectives for Water Resources in the Mzimvubu Catchment. River EWR Report. Prepared by Rivers for Africa eFlows Consulting (Pty) Ltd for Scherman Colloty and Associates cc. Report no. WE/WMA7/00/CON/CLA/0617.

Department of Water and Sanitation (DWS), South Africa, 2017e. Determination of Water Resource Classes and Resource Quality Objectives for Water Resources in the Mzimvubu Catchment. River Desktop EWR and Modelling Report: Volume 1 – Systems Modelling. Compiled by WRP Consulting Engineers (Pty) Ltd for Scherman Colloty and Associates cc. Report no. WE/WMA7/00/CON/CLA/0217, Volume 1.

MacFarlane, D.M., Kotze, D.C., Ellery, W.N., Walters, D., Koopman, V., Goodman, P. and Goge, C. (2007) WET-Health: a technique for rapidly assessing wetland health. Version 1.0. Water Research Commission, Pretoria.

Nel, J.L., Murray, K.M., Maherry, A.M., Petersen, C.P., Roux, D.J., Driver, A., Hill, L., van Deventer, H., Funke, N., Swartz, E.R., Smith-Adao, L.B., Mbona, N., Downsborough, L., and Nienaber, S. 2011. Technical Report for the National Freshwater Ecosystem Priority Areas Project. WRC Report No. 1801/2/11.

Parsons, R.P. and Wentzel, J. 2007. Groundwater Resource Directed Measures (GRDM) Manual. Water Research Commission Report No. TT 299/07, with support from FETWater.

Pitman, W.V., Bailey, A.K., Kakebeeke, J.P. 2006. WRSM2000: Water Resources Simulation Model for Windows – User's Guide. Steward Scott Consulting Engineers and TiSD, Johannesburg.

Statistics South Africa. 2012. Census 2011. Statistical release – P0301.4 / Statistics South Africa. Published by Statistics South Africa, Private Bag X44, Pretoria 0001.

# APPENDIX A: COMMENTS REGISTER

| Page /<br>Section                                                       | Report statement                                                                                         | Comments                                                                                                                                                                                                                                                                                                                                                             | Changes<br>made? | Author comment                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K. Majola, D                                                            | WS – 8 May 2018                                                                                          |                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                |
| second<br>paragraph;<br>Bullet 4                                        | recharge (which<br>excludes the<br>component of<br>recharge lost as<br>interflow and not<br>available to | By definition, Recharge is the water that<br>reaches the saturated zone thus continuously<br>replenishing the aquifer; so is it appropriate to<br>use the word <i>recharge</i> when we are including<br>the water that gets lost as interflow after<br>infiltration? This question applies to all other<br>parts of the document where this word is used<br>as such. |                  | Recharge estimates, such as those in GRAII include the<br>component of recharge lost to interflow and not available to<br>boreholes. Recharge replenishes the saturated zone, but the<br>entire saturated zone is not part of the regional aquifer. High lying<br>springs are discharge from a saturated zone, but from a perched<br>and not regional aquifer. |
| Page 4-3:<br>second<br>paragraph;<br>Bullets 5<br>and 6                 |                                                                                                          | Do the terms "Groundwater contribution to<br>Baseflow" on Bullet 5 and "Groundwater<br>Baseflow" on Bullet 6 imply the same thing? If<br>that's the case I would suggest the use of one<br>just to avoid confusion, otherwise an<br>explanation will suffice.                                                                                                        | Yes              |                                                                                                                                                                                                                                                                                                                                                                |
| The total<br>Aquifer<br>Recharge<br>estimated<br>for the study<br>area. |                                                                                                          | How does it compare to the Aquifer Recharge<br>values estimated from GRA II and other<br>previous studies undertaken in the area?                                                                                                                                                                                                                                    |                  | GRAII provided total recharge based on the Chloride method, not<br>all of which is recharge to the regional aquifer. The evidence of<br>this is that high recharge occurs, but borehole yields are low and<br>groundwater resources limited. Aquifer recharge is related to the<br>resource, hence lower than the total recharge in GRAII.                     |

| Page /<br>Section         | Report statement             | Comments                                                                                                                                                                                                                  | Changes<br>made? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Author comment                                 |
|---------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Page 5.3:<br>Table 5.3.   | TDS, Nitrate and<br>Fluoride | Are these the only elements considered in this<br>assessment of groundwater quality or others<br>were looked at but not included in the Tables?<br>This question applies to the quality Tables for<br>all the other GRUs. |                  | <ul> <li>These are the only constituents analysed in sufficient quantity to make any analysis possible. In the Groundwater Report it was noted that even the number of analyses for these constituents, especially N and F are very limited so no meaningful statistical analyses are possible.</li> <li>For example, the table below shows how few catchments have any arsenic analysis. For most of the catchments the analyses a far too few to determine means, medians and percentiles.</li> </ul> |                                                |
|                           |                              |                                                                                                                                                                                                                           |                  | Row Labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Count of As-Diss-Water (ARSENIC) (mg/L) Result |
|                           |                              |                                                                                                                                                                                                                           |                  | T31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T31B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T31C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T31D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                             |
|                           |                              |                                                                                                                                                                                                                           |                  | T31E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T31F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                             |
|                           |                              |                                                                                                                                                                                                                           |                  | T31G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T31H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T31J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T32A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | Т32В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T32C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T32D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T33A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T35C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | T35D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                              |
|                           |                              |                                                                                                                                                                                                                           |                  | Grand Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                            |
| Page 5-11:<br>Table 5.15. |                              | I suggest re-arrangement of Rows to start with T33A and put T33B-E in the last Row, unless there's a reason for the current order.                                                                                        | Yes              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |

| Page /<br>Section                | Report statement                         | Comments                                                                                                                                                                                                    | Changes<br>made? | Author comment |
|----------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|
| Page 5-29:<br>first<br>sentence. |                                          | Please rectify T5G to T35G, presumably.                                                                                                                                                                     | Yes              |                |
| 5.9.5,                           | localized over-<br>abstraction unlikely. | This sentence contradicts the one on Page 5-<br>29 which says <i>"Yields are relatively high, making localized overexploitation a possibility."</i> But they are both talking about GRU 10. Please rectify. | Yes              |                |